Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
DO đó; ΔABD cân tại A
b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)
\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)
=>góc MCB=góc ACB
hay CB là phân giác của góc AMC
c: Xét ΔCAQ có
CH là đường phân giác
CH là đường cao
Do đó: ΔCAQ cân tại C
\(\widehat{KAE}+\widehat{BAE}=90^0\)
\(\widehat{HAE}+\widehat{BEA}=90^0\)
mà \(\widehat{BAE}=\widehat{BEA}\)
nên \(\widehat{KAE}=\widehat{HAE}\)
Xét ΔKAE vuông tại K và ΔHAE vuông tại H có
AE chung
\(\widehat{KAE}=\widehat{HAE}\)
Do đó: ΔKAE=ΔHAE
Suy ra: AK=AH
a,\(\widehat{C}=180^o-90^o-\widehat{B}=90^o-30^o=60^o\)
b, Xét \(\Delta ACD-vs-\Delta MCD\)
- AC = CM (gt)
- \(\widehat{ACD}=\widehat{MCD}\) (gt)
- CD chung (gt)
=> \(\Delta ACD=\Delta MCD\left(c-g-c\right)\)
c, Ta có:
AK // CD và CK // AD => AK = CD (t/c đoạn chắn)
d, \(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{ACK}=90^o\\\widehat{ACD}=\widehat{CAK}=\dfrac{1}{2}\widehat{C}=30^o\left(so-le-trong\right)\end{matrix}\right.\Rightarrow\widehat{ADC}=\widehat{AKC}=180^o-90^o-30^o=60^o\)