Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\left\{{}\begin{matrix}6n⋮3\\6n+2=2\left(3n+1\right)⋮2\\6n-2=2\left(3n-1\right)⋮2\\6n\pm3=3\left(n\pm1\right)⋮3\end{matrix}\right.\)
\(\Rightarrow\left(6n;6n\pm2;6n\pm3\right)\) là các hợp số
Nên \(n>3\) thì các số nguyên tố có thể là \(6n+1\) hoặc \(6n-1\)
b) \(6n+1\) hoặc \(6n-1\left(n\inℕ^∗\right)\) không đêu là số nguyên vì \(6.4+1=25\left(n=4\right)\) là hợp số.
a) Mọi số tự nhiên m > 3 đều viết được một trong các dạng :
6n - 2 ; 6n - 1 ; 6n ; 6n + 1 ; 6n + 2 ; 6n + 3 (n thuộc N*)
Trong các số trên , các số 6n - 2 ; 6n ; 6n + 2 ; 6n + 3 là hợp số .
Vậy số nguyên tố lớn hơn 3 có dạng 6n - 1 và 6n + 1.(n thuộc N*)
b) không . Ví dụ 6 . 4 + 1= 25 là hợp số
uululjuljguljgguljgghuljgghuuljgghuguljgghugyuljgghugytuljgghugytuuljgghugytuuuljgghugytuuuuljgghugytuuuuuljgghugytuuuuuuljgghugytuuuuuiuljgghugytuuuuuiiuljgghugytuuuuuiiduljgghugytuuuuuiidtuljgghugytuuuuuiidtu tththhthhgthhgfthhgfcthhgfcg\(\orbr{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\\\end{cases}}\phi^{ }}\)
VD: 25=4.6+1=52
15=4.4-1=3.5
Bạn chỉ cần lấy ví dụ đơn giản cho bài như thế là được