Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=22010-(22009+22008+22007+...+21+20)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
Vậy M=1
A = 1 + 2 + 22 + 23 + ................................ + 22008 + 22009 + 22010
A = 1 + ( 2 + 22 + 23 + ................................ + 22008 + 22009 + 22010)
A = 1 + [(2 + 22 + 23) + (24 + 25 + 26) + ..................... + ( 22008 + 22009 + 22010)]
A = 1+ [2.(1 + 2 + 4) + 24.(1 + 2 + 4) + .......................+ 22008.(1 + 2 + 4)]
A = 1 + [2 . 7 + 24 . 7 + ......................... + 22008.7]
A = 1 + 7.[2 + 24 + ....................... + 22008]
Vì 7.[2 + 24 + ....................... + 22008] chia hết cho 7
1 không chia hết cho 7
=> A chia 7 dư 1
\(N=1+2+2^2+...+2^{2008}\)
\(\Leftrightarrow2N=2+2^2+...+2^{2009}\)
\(\Leftrightarrow N=2^{2009}-1\)
\(M=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)
\(2^{2009}-\left(2^{2010}-\left(2^{2009}-2^{2008}\right)\right)=2^{2009}-2^{2010}+2^{2009}-2^{2008}\)
\(=2^{2008}\left(2-2^2+2-1\right)=-2^{2008}\)
\(M=2^{2010}-\left(2^{2009}+2^{2008}+....+2+1\right)\)
Đặt :
\(A=2^{2008}+2^{2007}+........+2+1\)
\(\Leftrightarrow2A=2^{2009}+2^{2008}+.......+2\)
\(\Leftrightarrow2A-A=\left(2^{2010}+2^{2008}+.....+2\right)-\left(2^{2009}+2^{2008}+....+2+1\right)\)
\(\Leftrightarrow A=2^{2010}-1\)
\(\Leftrightarrow M=2^{2010}-\left(2^{2010}-1\right)\)
Còn thiếu mà Thanh Hằng Phạm