Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + (32 + 36 + 310 + ... + 32018) + (34 + 38 + ... + 32020)
S = 1 + A + B
A là nhóm các số hạng có dạng 32k (k thuộc N sao, k lẻ. \(1\le k\le1009\))
Với đk như thế thì 32k luôn có tận cùng là 9
Mà nhóm A có (2018-2)/4 + 1 = 505 số hạng => T/c A là 5
Tương tự với nhóm B: tận cùng mỗi số hạng là 1; có 505 số hạng => T/c B là 5
=> Tận cùng S là 1
Số số hạng của S là: (2020 - 0) : 2 + 1 = 1011 (số hạng)
Vì S có 1011 số hạng nên ta chia S thành 505 cặp, thừa 1 số hạng như sau:
S = 1 + (32 + 34) + (36 + 38) + ... + (32018 + 32020)
S = 1 + 32(1 + 32) + 36(1 + 32) + ... + 32018(1 + 32)
S = 1 + 32 . 10 + 36 . 10 + ... + 32018 . 10
S = 1 + (32 + 36 + ... + 32018) . 10
S = 1 + (...0) = (...1)
Vậy chữ số tận cùng của S là 1
4
a)\(S=1+2+2^2+...+2^{10}\)
\(2S=2+2^2+2^3+...+2^{11}\)
\(2S-S=\left(2+2^2+2^3+...+2^{11}\right)-\left(1+2+2^2+...+2^{10}\right)\)
\(S=2^{11}-1\)
b)\(S=1+3+3^2+...+3^6\)
\(3S=3+3^2+3^3+...+3^7\)
\(3S-S=\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)
\(2S=3^7-1\)
\(S=\frac{3^7-1}{2}\)
a.\(S=1+2+2^2+...+2^{10}\)
\(2S=2+2^2+2^3+...+2^{11}\)
\(\Rightarrow2S-S=S=\left(2+2^2+2^3+...+2^{11}\right)-\left(1+2+2^2+...+2^{10}\right)\)
\(=2^{11}-1\)
b) \(S=1+3+3^2+...+3^6\)
\(3S=3+3^2+3^3+...+3^7\)
\(\Rightarrow3S-S=2S=\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)
\(2S=3^7-1\Rightarrow S=\frac{3^7-1}{2}\)
\(S=1+3^2+3^4+....+3^{2016}\)
\(\Leftrightarrow9S=3^2+3^4+3^6+...+3^{2018}\)
\(\Leftrightarrow8S=3^{2018}-1\)
\(\Leftrightarrow S=\frac{3^{2018}-1}{8}\)
Ta có:\(3^{2018}-1=\left(3^4\right)^{504}\cdot3^2-1=\overline{....9}-1=\overline{........8}\)
\(\Rightarrow S=\frac{\overline{......8}}{8}=\overline{.....1}\)
Mik ko chắc chắn đúng đâu nha!
S=(1+32)+(3.3)2+(3.3)3+...+(3.3)1010
S=1+32.1+32.32+33.33+...+31010.31010
S=1+32.1+32.32+3.32.33+...+32.3108.31010
S=(1+32).(1+32+3.33+...+3108.31010)
S=10.(1+32+3.33+...+3108.31010)
vì số nào nhân với 10 cũng có chữ số tận cùng là không nên S có chữ số tận cùng là 0
Câu 5:
S = 1 + 32 + 34 + 36 + ... + 32020 (1)
\(\Rightarrow\)9S = 32 + 34 + 36 + 38 + .... + 32022 (2)
Có: 9S - S = 8S (3)
(1)(2) \(\Rightarrow\) 8S = ( 32 + 34 + 36 + ... + 32020) - ( 1 + 32 + 34 + 36 + ... + 32022)
8S = 32 + 34 + 36 + ... + 32020 - 1 - 32 - 34 - 36 - ... - 32022
8S = - 1 - 32022
8S = - 1 - [ ( 3. 3. 3. 3) . ( 3. 3. 3. 3) . .... . ( 3. 3. 3. 3)]
8S = - 1 - [\(\overline{....1}\). \(\overline{....1}\). .... . \(\overline{....1}\)]
8S = - 1 - \(\overline{....1}\)
8S = \(\overline{....2}\)
S = \(\overline{....2}\): 8
S = \(\overline{....4}\)hoặc S = \(\overline{....9}\)
Vậy S có chữ số tận cùng là 4 hoặc 9
Good luck for you !!!!