Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) do x=-2 l;à nghiệm của Pt nên ta thay vào PT . Ta được:
-8+4a+8-4=0
<=> a= 1
vậy a=1
b) với a =1 thay vào PT ta được pT trở thành :
\(x^3+x^2-4x-4=0\)
<=> \(x^3+2x^2-x^2-2x-2x-4=0\)
<=> \(x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)=0\)
<=> \(\left(x+2\right)\left(x^2-x-2\right)=0\)
<=>\(\left(x+2\right)\left(x+1\right)\left(x-2\right)=0\)
<=>\(\left[\begin{array}{nghiempt}x+2=0\\x-2=0\\x+1=0\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x=2\\x=-2\\x=-1\end{array}\right.\)
vậy nghiệm còn lại là -1 và 2
a ) Số a phải thõa mãn điều kiện \(\left(-2\right)^3+a\left(-2\right)^2-4\left(-2\right)-4=0\)
\(\Rightarrow a=1\)
b ) Với \(a=1\) , ta có phương trình \(x^3+x^2-4x-4=0\)
Ta phân tích vế trái của phương trình thành tích như sau :
\(x^3+x^2-4x-4=\left(x^3+x^2\right)-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
Đáp số : \(S=\left\{-1;-2;2\right\}\)
Mình chỉ hướng dẫn như vậy thôi .
Với a = 1, ta có phương trình: x 3 + a x 2 - 4 x - 4 = 0
⇒ x 2 (x + 1) – 4(x + 1) = 0 ⇒ ( x 2 – 4)(x + 1) = 0
⇒ (x + 2)(x – 2)(x + 1) = 0
⇒ x + 2 = 0 hoặc x – 2 = 0 hoặc x + 1 = 0
x + 2 = 0 ⇒ x = -2
x – 2 = 0 ⇒ x = 2
x + 1 = 0 ⇒ x = -1
Vậy phương trình có nghiệm: x = -2 hoặc x = 2 hoặc x = -1.
Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0
a) Xác định m để phương trình có một nghiệm x = 1.
b) Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình.
Trên phương trình có m đâu mà tìm m vậy ? Mình sửa :
\(x^3+mx^2-4x-4=0\)(1)
a) Thay \(x=1\), phương trình (1) trở thành :
\(1^3+m.1^2-4.1-4=0\)
\(\Leftrightarrow1+m-4-4=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Vậy \(x=1\Leftrightarrow m=7\)
b) Thay \(m=7\), phương trình (1) trở thành :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)^2-12=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4-2\sqrt{3}\right)\left(x+4+2\sqrt{3}\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{2\sqrt{3}-4;-2\sqrt{3}-4\right\}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\sqrt{3}-4;-2\sqrt{3}-4\right\}\)
bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra
bài 1 câu c "
\(4x^2-25+k^2+4kx=0.\)
thay x=-2 vào ta được
\(16-25+k^2+-8k=0\)
\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)
\(k\left(k+1\right)-9\left(k+1\right)=0\)
\(\left(k+1\right)\left(k-9\right)=0\)
vậy k=1 , 9 thì pt nhận x=-2
bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra
bài 3 cũng éo hiểu xác định a ? a ở đâu
1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm
. kết luận của chúa Pain đề như ###
a: Thay x=-2 vào pt,ta được:
-8+4a+8-4=0
=>4a-4=0
hay a=1
b: Pt sẽ là \(x^3+x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
=>(x+1)(x-2)(x+2)=0
hay \(x\in\left\{-1;2;-2\right\}\)