K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

1. \(n\in\left\{1;2;3;4;5;...\right\}\)

2. \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)

\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1009}\)

\(\Rightarrow A=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)

Ta có :

\(\left(A-B-1\right)^{2019}=\left(\frac{1}{1010}+...+\frac{1}{2019}-\left(\frac{1}{1010}+...+\frac{1}{2019}\right)-1\right)^{2019}\)

\(=\left(-1\right)^{2019}=-1\)

16 tháng 5 2019

A=(1+1/3+...+1/2019)-(1/2+1/4+...+1/2018)

A=(1+1/3+...+1/2019)+(1/2+1/4+...+1/2018)-(1/2+1/4+...+1/2018).2

A=(1+1/2+1/3+1/4+...+1/2019)-(1+1/2+...+1/1009)

A=1/1010+1/1011+...+1/2019

=) A=B

=) (A-B-1)^2019=-1

23 tháng 1 2020

Đợi hơi lâu tí nha !

23 tháng 1 2020

Câu 3 : \(2+4+6+.........+2n=156\)

\(\Leftrightarrow2\left(1+2+3+.....+n\right)=156\)

\(\Leftrightarrow1+2+3+.........+n=78\)

\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=78\)\(\Leftrightarrow n\left(n+1\right)=156=12.13\)\(\Leftrightarrow n=12\)

Vậy \(n=12\)

Đây, đề thi HSG trường tớ năm 2018 - 2019.Môn: Toán.        Lớp: 6Cấp: HuyệnCâu 1. (5 điểm) Tìm x biết:a) \(x-\frac{1}{24}=-\frac{1}{8}+\frac{5}{6}\)b) \(\frac{x+2}{3}=\frac{12}{x+2}\)c) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)Câu 2. (4 điểm) Thực hiện phép tính.\(A=\frac{2^5.7+2^5}{2^5.5^2-2^5.3}\)\(B=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)Câu 3. (7 điểm) a) Tìm tất cả...
Đọc tiếp

Đây, đề thi HSG trường tớ năm 2018 - 2019.

Môn: Toán.        Lớp: 6

Cấp: Huyện

Câu 1. (5 điểm) Tìm x biết:

a) \(x-\frac{1}{24}=-\frac{1}{8}+\frac{5}{6}\)

b) \(\frac{x+2}{3}=\frac{12}{x+2}\)

c) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)

Câu 2. (4 điểm) Thực hiện phép tính.

\(A=\frac{2^5.7+2^5}{2^5.5^2-2^5.3}\)

\(B=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)

Câu 3. (7 điểm) 

a) Tìm tất cả các số nguyên n để phân số \(\frac{n+1}{n-2}\)có giá trị là một số nguyên.

b) Cho \(M=\frac{2005^{2015}+1}{2005^{2016}+1}\)và \(N=\frac{2005^{2014}+1}{2005^{2015}+1}\). Hãy so sánh M và N.

c) Cho \(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\). Chứng tỏ A chia hết cho 25.

d) Cho \(n\inℕ^∗\), chứng minh rằng \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)không phải là một số tự nhiên.

Câu 4. (4 điểm) 

a) Tính số đo góc xOy và yOz, biết rằng chúng kề bù và 2xOy = 3yOz.

b) Cho tam giác ABC và BC = 5cm. Điểm M thuộc tia đối của tia CB sao cho CM = 3cm.

1. Cho biết BAM = 80o, BAC = 60o. Tính góc CAM.

2. Vẽ các tia Ax, Ay lần lượt là tia phân giác của góc BAC và góc CAM. Tính góc xAy.

3.Lấy K thuộc đoạn thẳng BM và CK = 1cm. Tính độ dài BK.

~~~~~~~~~~~~~~~~~~~~~~~~HẾT~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 

2
21 tháng 4 2019

Sao dễ dzậy

26 tháng 4 2019

Cậu ở trường nào vậy!!???. Có ở Thanh Hóa ko, mình cũng vừa thi xon hôm 18/4, ở huyện Cẩm Thủy, Thanh Hóa

30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu

23 tháng 6 2020

Ta có : \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)

\(=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2019}=B\)

\(\Rightarrow A-B-1=-1\)

\(\Rightarrow\left(A-B-1\right)^{2019}=-1\)

13 tháng 2 2018

\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)

\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)

\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)

\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=3-\left(1-\frac{1}{8}\right)\)

\(A=3-\frac{5}{8}\)

\(A=\frac{19}{8}\)

25 tháng 12 2018

XD: best tiếng anh chuyển sang toán ak!?

\(B1:\)

\(M=\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)...\left(1+\frac{7}{10800}\right)\)

\(=\frac{16}{9}\cdot\frac{27}{20}\cdot\frac{40}{33}\cdot\cdot\cdot\frac{10807}{10800}\)

\(=\frac{8.2}{9.1}\cdot\frac{9.3}{10.2}\cdot\frac{10.4}{11.3}\cdot\cdot\cdot\frac{57.51}{58.50}\)

\(=\frac{\left(8.9.10...57\right)\left(2.3.4...51\right)}{\left(9.10.11...58\right).\left(1.2.3...50\right)}\)

\(=\frac{8.51}{58.1}=\frac{204}{29}\)

Vậy.....

25 tháng 12 2018

\(M=\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)...\left(1+\frac{7}{10800}\right)\)

\(M=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}...\frac{10807}{10800}\)

\(M=\frac{8.2}{9.1}.\frac{9.3}{10.2}.\frac{10.4}{11.3}...\frac{107.101}{108.100}\)

\(M=\frac{\left(2.3.4...101\right)\left(8.9.10...107\right)}{\left(1.2.3...100\right)\left(9.10.11...108\right)}\)

\(M=\frac{101.8}{108}\)

\(M=\frac{202}{27}\)

k mình nha . câu 2 tí nữa mình gửi

Y
18 tháng 4 2019

\(5A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)

\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)

\(\Rightarrow4A=5A-A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

Đặt \(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

Khi đó \(4A=B-\frac{99}{5^{100}}< B\)

\(5B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}\)

\(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}+\frac{1}{5^{99}}\)

\(\Rightarrow4B=5B-B=1-\frac{1}{5^{99}}\)

\(\Rightarrow B=\frac{1}{4}-\frac{1}{4\cdot5^{99}}< \frac{1}{4}\)

\(\Rightarrow4A < B\Rightarrow4A< \frac{1}{4}\)

\(\Rightarrow A< \frac{1}{16}\) ( đpcm )

Y
18 tháng 4 2019

2. \(M=\left(1+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(M=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)

\(\Rightarrow\left(M-N\right)^3=0\)

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU