Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ
+ Nếu n chia hết cho 2 thì nx(n+5) chia hết cho 2 thì bài toán đã được chứng minh
+Nếu n ko chia hết cho 2 thì n = 2k+1 suy ra n+5 =2k+5+1=2k+6
mà 2k chia hết cho 2 và 6 chia hết cho 2 nên n+5 chia hết cho 2
suy ra n(n+5) chia hết cho 2
Vậy n(n+5) luôn chia hết cho 2 (đpcm)
Nếu n = 2k => n chia hết cho 2
=> n(n + 5) chia hết cho 2
Nếu n = 2k + 1 => n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2
=> n + 5 chia hết cho 2
=> n(n + 5) chia hết cho 2
Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.
n luôn chia hết cho 2
vì n + 3 x n + 12 luôn là số chẵn
+ Xét TH1: n chẵn
Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.
+ Xét TH2: n lẻ
Suy ra n + 5 chẵn
Do đó (n + 5) chia hết 2
Vậy n(n +5) chia hết cho 2.
n(n + 5) = n2 + 5n
+ Nếu n là lẻ thì n2 và 5n đều là lẻ. Khi đó n2 + 5n là chẵn. ⇒ n2 + 5n ⋮ 2
+ Nếu n là chẵn thì n2 và 5n đều là chẵn. Khi đó n2 + 5n là chẵn. ⇒ n2 + 5n ⋮ 2
⇒ ĐPCM
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
xét 2 trường hợp:
+ TH1: n chẵn, tức n = 2k.
n.(n+5)=2k.(2k+5) chia hết cho 2.
+ TH2: n lẻ, tức n = 2k+1
n.(n+5)=(2k+1).(2k+6)= (2k+1).2.(k+3) chia hết cho 2.
Vậy với mọi n thì n.(n+5) chia hết cho 2
Với n = 2k => n chia hết cho 2
=> n(n + 5) chia hết cho 2
Với n = 2k + 1
=> n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2
=> n + 5 chia hết cho 2
=> n(n + 5) chia hết cho 2
Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.
Ta có : 243 chia hết cho 9 => 243a chia hết cho 9 (a thuộc N)
657 chia hết cho 9 => 657b chia hết cho 9 (b thuộc N)
Từ 2 điều trên => 243a + 657b chia hết cho 9 (a, b thuộc N)
243a+657b =9( 27a+ 73b) chia het cho 9