Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Rightarrow d:4x+5y+14=0\)
\(d':4x+5y+14=0\)
Ta có: \(\dfrac{4}{4}=\dfrac{5}{5}=\dfrac{14}{14}\) \(\Rightarrow d\equiv d'\)
b) \(\Rightarrow d:x+2y-5=0\)
Ta có: \(\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{-5}{-10}\) \(\Rightarrow d\equiv d'\)
c) Ta có: \(\dfrac{1}{2}\ne\dfrac{1}{1}\) \(\Rightarrow d\) cắt \(d'\)
a: Δ có vtcp là (2;-1) và đi qua A(1;-3)
=>VTPT là (1;2)
PTTQ là:
1(x-1)+2(y+3)=0
=>x-1+2y+6=0
=>x+2y+5=0
b: Vì d vuông góc Δ nên d: 2x-y+c=0
Tọa độ giao của d1 và d2 là:
x+2y=8 và x-2y=0
=>x=4 và y=2
Thay x=4 và y=2 vào 2x-y+c=0, ta được
c+2*4-2=0
=>c=-2
Phương trình tổng quát \(\Delta\):
\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0
a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)
Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5
<=> \(5y^2-18y-8=0\)
<=>y=4 và y=\(\dfrac{-2}{5}\)
Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))
b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0
Ta có hệ phương trình:
\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)
\(\begin{cases} x=-2\\ y=1 \end{cases}\)
=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d
c. Nhận thấy, điểm A\(\notin\)\(\Delta\)
Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)
Vì M\(\in\Delta\)=> M(2y-4;y)
Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)là \(\overrightarrow{u}\)(2;1)
\(\overrightarrow{AM}\) (2y-4;y-1)
Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)
<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)
<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0
<=> 2(2y-4)+(y-1)=0
<=> 5y-9=0
<=> y= \(\dfrac{9}{5}\)
=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))
a) 2x-3y+5=0
Giả sử x=0⇒y=\(\frac{5}{3}\)
⇒d đi qua A(2:0)
⇒vtpt n1=(2;-3)
thay tt tìm đc vtpt n2=(3;7)
ADCT tính góc cos tìm đc gócφ =56'53
b)giải tt như câu a
a/ \(\overrightarrow{AB}=\left(0;1\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\overrightarrow{n_{AB}}=\left(1;0\right)\) và 1 vtcp là \(\overrightarrow{u_{AB}}=\left(0;1\right)\)
- Phương trình tham số AB: \(\left\{{}\begin{matrix}x=4+0.t\\y=1+1.t\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=1+t\end{matrix}\right.\)
- Phương trình tổng quát:
\(1\left(x-4\right)+0\left(y-1\right)=0\Leftrightarrow x-4=0\)
b/ Thay tọa độ x; y từ \(\Delta_1\) vào \(\Delta_2\) ta được:
\(3\left(5+i\right)-2\left(-3+2i\right)-26=0\)
\(\Leftrightarrow-i-5=0\Rightarrow i=-5\)
Thay \(i=-5\) vào pt \(\Delta_1\Rightarrow\left\{{}\begin{matrix}x=5-5=0\\y=-3+2.\left(-5\right)=-13\end{matrix}\right.\)
\(\Rightarrow\Delta_1\) cắt \(\Delta_2\) tại điểm có tọa độ \(\left(0;-13\right)\)
c/ Áp dụng công thức khoảng cách:
\(d\left(M;\Delta\right)=\frac{\left|3.2-4.3+4\right|}{\sqrt{3^2+\left(-4\right)^2}}=\frac{2}{5}\)
d/ Ta có \(\overrightarrow{n_{\Delta1}}=\left(1;2\right)\) và \(\overrightarrow{n_{\Delta2}}=\left(2;-1\right)\)
\(\Rightarrow\overrightarrow{n_{\Delta1}}.\overrightarrow{n_{\Delta2}}=1.2+2.\left(-1\right)=2-2=0\)
\(\Rightarrow\Delta_1\perp\Delta_2\) hay góc giữa \(\Delta_1\) và \(\Delta_2\) bằng \(90^0\)
Cảm mơn bạn đã giúp đỡ mình rất nhiều