Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 4 + 22 + 23 + 24 + ... + 2 20
=>A = 2 2 + 22 + 23 + 24 + ... + 2 20
=>2A= 2 4 + 2 6 + 2 8 + 2 10+ ... + 2 20 +22 21
=>A=22 21 -2 4
( x + 1 ) + ( x + 2 ) + ...+ ( x + 100 ) = 5750
100x+(1+2+3+4+...+100)=5750
100x+5050=5750
100x=500
x=5
a,abcdeg = ab.10000+ cd. 100 + eg
= 9999.ab + 99.cd + ab + cd+ eg
=[9999ab +99cd + [ ab + cd + eg]
vi 9999ab +99cd chia het cho 11 va ab + cd + eg chia het cho 11[ theo de bai]
=>dpcm
b] tu bn lam
abcdeg =1000ab+100cd+eg =11 (101ab + 11cd )+(ab+cd+eg)
vi ab+cd+eg chia het cho 11 nen abcdeg chia het cho11
a) abcdeg = 10000.ab+100.cd+eg = 9999.ab+99.cd+(ab+cd+eg)
Ta có: 9999.ab và 99.cd luôn chia hết cho 11
Nên nếu (ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11
=> Đpcm
ta có:abcdeg=1000ab+100cd+eg=999ab+ab+99cd+cd+eg=(999ab+99cd)+(ab+cd+eg)
vì 999ab+99cd chia hết cho 11mà theo bài ra ab+cd+egchia hết cho 11.Suy ra abcdegchia hết cho 11
a, Ta có: abcdeg = ab0000 + cd00 + eg
= ab.10000 + cd.100 + eg
= ab.9999 + ab + cd.99 + cd + eg
= ab.11.909 + ab + cd.11.9 + cd + eg
= 11(ab.909 + cd.9) + (ab + cd + eg)
Vì 11(ab.909 + cd.9) \(⋮\)11 và (ab + cd + eg) \(⋮\)11 nên abcdeg \(⋮\)11 (đpcm)
b, Ta có: 1028 + 8 = 100.......008 (27 c/s 0)
Vì 1028 + 8 có 3 chữ số tận cùng là 008 nên 1028 + 8 \(⋮\) 8 (1)
Lại có: 1 + 0 + 0 +....+ 0 + 0 + 8 = 9 \(⋮\)9 => 1028 + 8 \(⋮\) 9 (2)
Mà ƯCLN(8,9) = 1 (3)
Từ (1) ; (2) và (3) suy ra 1028 + 8 \(⋮\)72
câu 1
(x+1)+(x+2)+...+(x+100)=5750
(x+x+...+x)+(1+2+3+...+99+100)=5750 (có 100 số x và từ 1 -100 có 100 số)
(x.100)+(1+100).100:2=5750
(x.100)+5050=5750
x.100=700
x=7
vậy........
câu 2
a)ta có
abcdeg=ab.10000+cd.100+eg
=9999.4b+99cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
ta thấy 9999ab+99cd\(⋮\)11 và ab+cd+eg cn vậy...
=>....
vậy...
b)ta có 10^3 chia hết cho 8
=>10^25.10^3 chia hết cho 8 (=10^28)
=>10^28+8 chia hết cho 28 (1)
ta có 10^28+8=10...08(27 cs 0)
=>10^28+8\(⋮\)9(2)
vì ưCLN(8;9)=1 (3)
từ (1)(2)(3) suy ra 10^28+8 chia hết cho 72
vậy.....
a, ta có: abcdeg = ab x 10000+ cd x 100 + eg= ab x 9999 x ab + cd x 99 x cd + eg = ab x 9999 + cd x 99 + ( ab+cd+eg)
vì 9999 chia hết cho 11 => ab x 9999 chia hết cho 11
vì 99 chia hết cho 11 => cd x 99 chia hết cho 11
mà ab+cd+eg chia hết cho 11 => ab x 9999 x ab+ cd x 99 x cd +eg chia hết cho 11
=> abcdeg chi hết cho 11 ( đpcm )
b,ta có: 1000 chia hết cho 8 => 103 chia hết cho 8
=> 1025 x 103 chi hết cho 8
và 8 chia hết cho 8
=> 1028+8 chia hết cho 8 (1)
Lại có: 1028+8= 10......08 ( 27 chữ số 0 )
=> 1028+8 chia hết cho 9 (2)
Vì ƯCLN(8;9)=1 (3)
Từ (1), (2) và (3)=>1028+8 chia hết cho 72
~~~Chúc bạn học tốt~~~
1 Ta có b = a - 4 (1) hoặc là b = a - 7 (2) vs a phải > 7
Bạn viết số 7a5b1 = 70.000 + 1000a + 500 + 10b + 1 = 70501 + 1000a + 10b
Từ (1) --> 7a5b1 = 70501 + 1000a + 10(a - 4) = 70461 + 1010a
Ta thấy 70461 chia hết cho 3, vì vậy để 7a5b1 chia hết cho 3 thì 1010a phải chia hết cho 3. Vậy nên a trong trường hợp này chỉ có thể bằng 0, 3, 6, 9. Nhưng vì đk là a >7 nên suy ra a = 9
--> b = 5
Còn trong TH (2) thì bạn cũng có thể thế tương tự như trên và tính ra a = 9 --> b = 2
Chúc bạn học tốt
2
1 Ta có b = a - 4 (1) hoặc là b = a - 7 (2) vs a phải > 7
Bạn viết số 7a5b1 = 70.000 + 1000a + 500 + 10b + 1 = 70501 + 1000a + 10b
Từ (1) --> 7a5b1 = 70501 + 1000a + 10(a - 4) = 70461 + 1010a
Ta thấy 70461 chia hết cho 3, vì vậy để 7a5b1 chia hết cho 3 thì 1010a phải chia hết cho 3. Vậy nên a trong trường hợp này chỉ có thể bằng 0, 3, 6, 9. Nhưng vì đk là a >7 nên suy ra a = 9
--> b = 5
Còn trong TH (2) thì bạn cũng có thể thế tương tự như trên và tính ra a = 9 --> b = 2
~Chúc bạn học tốt~