Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n > 3 thì vì n là nguyên tố nên n chia cho 3 dư 1 hoặc 2 => \(n=3k\pm1\)
Suy ra \(n^2+2=9k^2+3\) chia hết cho 3. Trái với giả thiết \(n^2+2\) là số nguyên tố.
Vậy n chỉ có thể bằng 3. Khi đó \(n;n^2+2;n^3+2\) lần lượt là \(3;11;29\) đều là số nguyên tố.
etetrttymrturfgdfeeeyeeegguthkxgdzyyyzrzeeerrttytjjmetetetetethehtemeteteetu,o;/o
7lkyuxrxytwtqtwyer
2,
-Ta có: \(x^2+45=y^2\)
\(\Leftrightarrow y^2>45\Rightarrow y\) là số ng tố lẻ
\(\Rightarrow x^2\)chẵn( vì: chẵn +5=lẻ)
\(\Rightarrow x=2\)
\(\Leftrightarrow2^2+45=y\)
\(\Leftrightarrow y=\pm\sqrt{49}=\pm7\)
-Mà: snt>0
-Vậy: \(x=2;y=7\)
cả 2 số ko thể là số nguyên tố được vì ta có 2^n−1,2n,2^n+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3
mà 2n không chia hết cho 3 nên trong 2 số 2^n−1,2^n+1 có 1 số chia hết cho 3 và lớn hơn 3 (do n>2)
vậy 2 số trên ko đồng thời là số nguyên tố
^ là mũ nhé
\(2xy+x-2y=4\\ \Rightarrow x\left(2y+1\right)-2y-1=4-1\\ \Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\\ \Rightarrow\left(x-1\right)\left(2y+1\right)=3\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,2y+1\in Z\\x-1,2y+1\inƯ\left(3\right)\end{matrix}\right.\)
Ta có bảng:
Vậy \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(-2;-1\right);\left(2;1\right);\left(4;0\right)\right\}\)