K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

Câu 1 :

- Để hệ phương trình có nghiệm duy nhất thì : \(\frac{3}{m}\ne-\frac{m}{1}\left(m\ne0\right)\)

=> \(m^2\ne-3\) ( luôn đúng với mọi m )

Câu 2 :

Ta có hệ : \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3\left(3m+2-2y\right)-y=2m-1\\x=3m+2-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}9m+6-6y-y=2m-1\\x=3m+2-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=\frac{2m-1-6-9m}{-7}=\frac{-7m-7}{-7}=m+1\\x=3m+2-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=m+1\\x=3m+2-2m-2=m\end{matrix}\right.\)

- Ta có : \(x^2+y^2=10\)

=> \(m^2+2m+1+m^2=10\)

=> \(2m^2+2m-9=0\)

=> \(\left(m\sqrt{2}\right)^2+\frac{2m\sqrt{2}.1}{\sqrt{2}}+\frac{1}{2}-\frac{19}{2}=0\)

=> \(\left(m\sqrt{2}+\frac{1}{\sqrt{2}}\right)^2=\frac{19}{2}\)

=> \(\left[{}\begin{matrix}m\sqrt{2}+\frac{1}{\sqrt{2}}=\sqrt{\frac{19}{2}}\\m\sqrt{2}+\frac{1}{\sqrt{2}}=-\sqrt{\frac{19}{2}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}m=\frac{\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\\m=\frac{-\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\end{matrix}\right.\)

Vậy m thỏa mãn điều kiện trên với \(\left[{}\begin{matrix}m=\frac{\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\\m=\frac{-\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\end{matrix}\right.\)

22 tháng 4 2020

tks

NV
19 tháng 11 2019

Trừ pt trên cho dưới:

\(\left(m-1\right)x=m-1\)

- Với \(m=1\Rightarrow\) hệ có vô số nghiệm (loại)

- Với \(m\ne1\Rightarrow x=\frac{m-1}{m-1}=1\)

\(\Rightarrow y=-m-x=-m-1\)

Để \(y^2=x\)

\(\Leftrightarrow\left(-m-1\right)^2=1\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

DD
22 tháng 11 2021

\(\hept{\begin{cases}x+2y=3m+3\\4x-3y=m-10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-1\\y=m+2\end{cases}}\)

\(x^2-y^2=\left(m-1\right)^2-\left(m+2\right)^2=-6m-3=m-1\)

\(\Leftrightarrow m=-\frac{2}{7}\).

3 tháng 2 2021

Thay m=2 vào HPT ta có: 

\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiemj (x;y) = (3;-11)

3 tháng 2 2021

nghiệm là (3;-1) nhé

10 tháng 7 2017

1.Để  đường thẳng  \(y=\left(m-1\right)x+3\) song song với đường thẳng \(y=2x+1\)

thì \(m-1=2\Rightarrow m=3\)

2. a. Với \(m=-2\Rightarrow\)\(\hept{\begin{cases}-2x-2y=3\\3x-2y=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=-\frac{17}{10}\end{cases}}\)

b. Với \(m=0\Rightarrow\hept{\begin{cases}-2y=3\\3x=4\end{cases}\Rightarrow\hept{\begin{cases}y=-\frac{3}{2}\\x=\frac{4}{3}\end{cases}\left(l\right)}}\)

Với \(m\ne0\Rightarrow\hept{\begin{cases}m^2x-2my=3m\\6x+2my=8\end{cases}\Rightarrow\left(m^2+6\right)x=3m+8}\)

\(\Rightarrow x=\frac{3m+8}{m^2+6}\)\(\Rightarrow y=\frac{mx-3}{2}=\frac{m\left(3m+8\right)-3\left(m^2+6\right)}{2\left(m^2+6\right)}=\frac{4m-9}{m^2+6}\)

Để \(x+y=5\Rightarrow\frac{3m+8}{m^2+6}+\frac{4m-9}{m^2+6}=5\Rightarrow7m-1=5m^2+30\)

\(\Rightarrow-5m^2+7m-31=0\)

Ta thấy phương trình vô nghiệm nên không tồn tại m để \(x+y=5\)