Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(4x\left(2y-z\right)+7y\left(z-2y\right)\)
\(=4x\left(2y-z\right)-7y\left(2y-z\right)\)
\(=\left(4x-7y\right)\left(2y-z\right)\)
b) Ta có: \(2x\left(x+3\right)+\left(3+x\right)\)
\(=\left(2x+1\right)\left(x+3\right)\)
a)5x2y-10xy2
=5xy(x-2y)
b,:4x(2y-z)+7y(z-2y)
=4x(2y-z)-7y(2y-z)
=(2y-z)(4x-7y)
c,:y(x-z)+7(z-x)
=y(x-z)-7(x-z)
=(x-z)(y-7)
d)36-12x+x^2
=x2-2.x.6+62
=(x-6)2
e) (x-5)^2-16
=(x-5)2-42
=(x-5-4)(x-5+4)
=(x-9)(x-1)
f) 8x^3+1/27
=(2x)3+(1/3)3
=(2x+1/3)(4x2+2/3.x+1/9)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
1,
a, = 2x.(x-2)
b, = (x^2+y^2+2xy)-(2x+2y)
= (x+y)^2-2.(x+y)
= (x+y).(x+y-2)
2,
a,<=> x^2-1-x^2-2x = 3
<=> -2x-1=3
<=> -2x=4
<=> x=4 : (-2) = -2
b, <=>(x^2-4x+4)-7=0
<=>(x-2)^2-7=0
<=> (x-2)^2=7
=> x-2=+-\(\sqrt{7}\)
<=> x=2+-\(\sqrt{7}\)
k mk nha
a, \(2x-4x\)
\(=-2x\)
b, \(x^2+y^2+2xy-2x-2y\)
\(=\left(x+y\right)^2-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-2\right)\)
a, \(\left(x+1\right)\left(x-1\right)-x\left(x+2\right)=3\)
\(\Leftrightarrow x^2-1-x^2-2x=3\)
\(\Leftrightarrow-2x=4\)
\(\Leftrightarrow x=-2\)
b,\(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
a: =(x^2-x+1)(x^2+x+1)
b: =x^2-6xy+9y^2=(x-3y)^2
c: =5x(x^2-2xy+y^2)
=5x(x-y)^2
d: =(x-3)^2
e: =(2y-z)(4x+7y)
a)HĐT:(x^2+1-x)(x^2+1+x)
b)=x^2-2.x.3y+(3y)^2
c)=5x(x^2-2xy+y^2)
=5x(x-y)^2
d)x^2-2.3.x+3^2
=(x-3)^2
e)(2y-z)+7y(2y-z)
=(2y-z)(1+7y)
\(1,=8xy+14y^2-4xz-7yz\\ 2,=y\left(4x^2-12x+9\right)=y\left(2x-3\right)^2\\ 3,\Leftrightarrow\left(x+3\right)\left(x-2+x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Câu 1: \(\left(2y-z\right)\left(4x+7y\right)=8xy-4xz+14y^2-7yz\)
câu 2: \(4x^2y-12xy+9y=y\left(4x^2-12x+9\right)\)
câu 3: \(\left(x-2\right)\left(x+3\right)+x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-2+x\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2x-2\right)=0\\ \Leftrightarrow2\left(x+3\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)