Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tuyến có nghĩa là đường thắng; cát nghĩa là cắt.
Cát tuyến là đường thẳng cắt một đường cong hoặc cắt một số đường thẳng cho trước.
Tuyến có nghĩa là đường thắng; cát nghĩa là cắt. Cát tuyến là đường thẳng cắt các đường khác (đường thẳng, đường tròn, đường cong....).
A S B D C O
a) Ta có : Góc SAB = 1/2 sđ cung AB ( Góc tạo bởi tiếp tuyến và dây cung)
Góc SCA = 1/2 sđ cung AB (Góc nội tiếp)
=> Góc SAB = Góc SCA
Xét hai tam giác : \(\Delta SAB\)và \(\Delta SCA\)có : Góc ASC chung , Góc SAB = góc SCA
=> \(\Delta SAB~\Delta SCA\left(g.g\right)\)\(\Rightarrow\frac{SA}{SC}=\frac{SB}{SA}\Rightarrow SA^2=SB.SC\)
b) Ta có SDA là góc ngoài của tam giác ACD \(\Rightarrow SDA=DAC+DCA=DAC+\frac{1}{2}sdAB\)
Mặt khác, ta có ; \(SAD=BAD+\frac{1}{2}sdAB=DAC+\frac{1}{2}sdAB\)( Vì AD là tia phân giác)
Do đó góc SDA = góc SAD => Tam giác SAD cân tại S => SA = SD
1) Do B, C cùng thuộc đường tròn đường kính AO nên \(\widehat{ABO}=\widehat{ACO}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
Vậy nên AB, AC là các tiếp tuyến của đường tròn (O).
Xét tam giác vuông ABO có \(AO=R\sqrt{2};OB=R\)
Áp dụng định lý Pi-ta-go ta có:
\(AB=\sqrt{AO^2-BO^2}=R\)
Vậy thì AC = AB = R.
2) Ta thấy tứ giác ABOC có AB = BO = OC = CA = R nên nó là hình thoi.
Lại có \(\widehat{ABO}=90^o\) nên ABOC là hình vuông.
3) Xét tam giác ADC và tam gác ACE có:
Góc A chung
\(\widehat{ACD}=\widehat{AEC}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung DC)
\(\Rightarrow\Delta ADC\sim\Delta ACE\left(g-g\right)\)
\(\Rightarrow\frac{AD}{AC}=\frac{AC}{AE}\Leftrightarrow AD.AE=AC^2=R^2\) = hằng số.
Hoàn toàn tương tự ta cũng có AM.AN = AB2 = R2 = hằng số.
Vậy nên AM.AN = AD.AE = R2.
4) Xét đường tròn (O), ta có K là trung điểm dây cung MN nên theo liên hệ đường kính dây cung, ta có: \(OK\perp MN\) hay \(\widehat{AKO}=90^o\)
Vậy thì K thuộc đường tròn đường kính OA.
Do AMN là cát tuyến nên K thuộc cung tròn BmC (trên hình vẽ).
5) Ta có ABOC là hình vuông nên AO và BC cắt nhau tại trung điểm mỗi đường.
Vậy thì BC qua tâm I.
Từ đó ta có \(\widehat{IJO}=90^o\)
Lại vừa chứng minh được \(\widehat{JKO}=90^o\).
Tứ giác IJKO có tổng hai góc đối bằng 180o nên IJKO là tứ giác nội tiếp hay O, K, I, J cùng thuộc một đường tròn.
Ta có AB = AC nên \(\widebat{AB}=\widebat{AC}\Rightarrow\widehat{BKA}=\widehat{CBA}=\widehat{JBA}\)
Vậy thì \(\Delta ABJ\sim\Delta AKB\left(g-g\right)\Rightarrow\frac{AB}{AK}=\frac{AJ}{AB}\Rightarrow AJ.AK=AB^2\)
xét (O) có MA ,MB là các tiếp tuyến(A,B là tiếp điểm)
=>góc OAM=90 độ
góc OBM=90 độ
=>góc OAM+góc OBM=180 độ
2 góc này ở vị trí đối diện=> tứ giác MAOB nội tiếp
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn (như 1+1 = ?). Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
không hiểu gì cả?????