K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2021

1)3n-1⋮n-3
=>3n-1-8+8⋮n-3
=>3n-9+8⋮n-3
=>3(n-3)+8⋮n-3
=>8⋮n-3(do 3(n-3)⋮n-3)
=>n-3∈Ư(8)=>n-3∈{1,2,4,8}
+)n-3=1=>n=1+3=4
+)n-3=2=>n=2+3=5
+)n-3=4=>n=4+3=7

+)n-3=8=>n=8+3=11
Vậyn∈{4,5,7,11}

NM
10 tháng 1 2021

 a, ta có 3n-1=3(n-3)+8 chia hết cho n-3 khi n-3 là ước của 8 hay \(n-3\in\left\{\pm1,\pm2,\pm4,\pm8\right\}\Rightarrow n\in\left\{1,2,4,5,7,11\right\}\)

 b, ta có 4n+1=2(2n-1)+3 chia hết cho 2n-1 khi 2n-1 là ước của 3 hay \(2n-1\in\left\{\pm1,\pm3\right\}\Rightarrow n\in\left\{0,1,2\right\}\)

 c, ta có với n=0 thì thỏa mãn 

với n khác 0 thì 2 không chia hết cho 2n+1 ta được 10n+6 chia hết cho 2n+1. ta có 10n+6=5(2n+1)+3 chia hết cho 2n+1 khi 2n+1 là ước của 3 hay \(2n+1\in\left\{\pm3,\pm1\right\}\Rightarrow n\in\left\{0,1\right\}\) 

 
 
4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

a: \(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)

b: \(\Leftrightarrow3n-3+8⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)

c: \(\Leftrightarrow4n+6+4⋮2n+3\)

\(\Leftrightarrow2n+3\in\left\{1;-1\right\}\)

hay \(n\in\left\{-1;-2\right\}\)

d: \(\Leftrightarrow15n+18⋮3n+1\)

\(\Leftrightarrow15n+5+13⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;13;-13\right\}\)

hay \(n\in\left\{0;4\right\}\)

31 tháng 10 2021

Xin lỗi, mình sai chính tả một chút ở phần cuối ạ!

21 tháng 12 2016

a, 6 chia hết cho n-2 => n-2 thuộc Ư(6)=(1,-1,2,-2,3,-3,6,-6)

hay n thuộc (3,1,4,0,5,-1,8,-4). Mà n thuộc Z

=> n= 3,1,4,0,5,-1,8,-4)

c, 4n+3 chia hết cho 2n+1 => 2(2n+1)+1 chia hết cho 2n+1

Mà 2(2n+1) chia hết cho 2n+1 => 1 chia hết cho 2n+1 hay 2n+1 thuộc Ư(1)=(1,-1)

=> n thuộc (0,-1)

Do n thuộc Z => n=0,-1

d, 3n+1 chia hết cho 11-n => -3(11-n)+34 chia hết cho 11-n

Mà -3(11-n) chia hết cho 11-n => 34 chia hết cho 11-n hay .........( làm tương tự câu c)

21 tháng 12 2016

a) n-2 thuộc ước của 6

 Ư (6)={+-1;+-2;+-3;+-6}

n-2=1  => n=3

n-2=-1 => n=1

n-2=2 => n=4

n-2=-2 => n=0

n-2=3 => n=5

n-2=-3 => n=-1

n-2=6 => n=8

n-2=-6 => n=-4

b) do 5n chia hết cho n nên 27 phải chia hết cho n 
n thuộc N nên n =1,3,9,27 
và 5n< hoặc =27 
suy ra n=1 hoặc 3 
n=1 thỏa mãn 
n=3 thỏa mãn 
suy ra 2 nghiệm

c) 4n-5 chia hết cho 2n-1

 P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1) 

P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3 

* 2n - 1 = -1 <=> n = 0 

* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên) 

* 2n - 1 = 1 <=> n = 1 

* 2n - 1 = 3 <=> n = 2 

Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2 

d) 3n+1 chia hết cho 11-2n

 + 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n. Ta tìm điều kiện của n để 2(3n+1) chia hết cho 11-2n 
+ 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n. 
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35. 
* Với 11-2n=-1 => n=6 
* Với 11-2n=1 => n=5 
* Với 11-2n=-5 => n=8 
* Với 11-2n=5 => n=3 
* Với 11-2n=-7 =>n=9 
* Với 11-2n=7 => n=2 
* Với 11-2n=-35 => n=23 
* Với 11-2n=35 => n=-12 
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n