Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\)
b ) \(x-4\sqrt{x}+3=\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2-1=\left(\sqrt{x}-2\right)^2-1\)
\(=\left(\sqrt{x}-2\right)^2-1^2=\left(\sqrt{x}-2+1\right)\left(\sqrt{x}-2-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)\)
\(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}.\left(\sqrt{x}+1\right)\)
\(x-4\sqrt{x}+3=\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2\right]-1^2=\left(\sqrt{x}-2\right)^2-1^2\)
\(=\left(\sqrt{x}-2-1\right)\left(\sqrt{x}-2+1\right)\)
\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)\)
1) \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
2) \(x-3=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)
3) \(a+b=a-\left(-b\right)=\left(\sqrt{a}-\sqrt{-b}\right)\left(\sqrt{a}+\sqrt{-b}\right)\)
p/s: chúc bạn học tốt
a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)
\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)
b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)
\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)
a) \(=9x-9\sqrt{xy}+4\sqrt{xy}-4y\)
\(=\left(9x-9\sqrt{xy}\right)+\left(4\sqrt{xy}-4y\right)\)
\(=9\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)+4\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(9\sqrt{x}+4\sqrt{y}\right)\)
b)\(=\left(xy+\sqrt{x}.y\right)+\left(\sqrt{x}+1\right)\)
\(=\sqrt{x}y\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}+1\right)\left(\sqrt{x}.y+1\right)\)
a, \(5+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)
b, \(a-2\sqrt{a}=\sqrt{a}\left(\sqrt{a}-2\right)\)
c, \(x-\sqrt{xy}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)
d, \(x-y-\sqrt{x}-\sqrt{y}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)
a, \(7\sqrt{AB}+7B-\sqrt{A}-\sqrt{B}=7\sqrt{B}\left(\sqrt{A}+\sqrt{B}\right)-\left(\sqrt{A}+\sqrt{B}\right)\)\(=\left(\sqrt{A}+\sqrt{B}\right)\left(7\sqrt{B}-1\right)\)
b, \(a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)\)
c,\(\sqrt{x^2-25y^2}-\sqrt{x-5y}=\sqrt{x-5y}.\sqrt{x+5y}-\sqrt{x-5y}\)
\(=\sqrt{x-5y}\left(\sqrt{x+5y}-1\right)\)
\(a,7\sqrt{AB}+7B-\sqrt{A}-\sqrt{B}\)( Với A>= 0, B>=0)
\(=\left(7\sqrt{AB}-\sqrt{A}\right)+\left(7B-\sqrt{B}\right)\)
\(=7\sqrt{A}\left(\sqrt{B}-1\right)+7\sqrt{B}\left(\sqrt{B}-1\right)\)
\(=\left(\sqrt{B}-1\right)\left(7\sqrt{A}+7\sqrt{B}\right)\)
\(=7\left(\sqrt{B}-1\right)\left(\sqrt{A}+\sqrt{B}\right)\)
\(b,a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}\)Với a>= 0, b>=0)
\(=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)\)
\(c,\sqrt{x^2-25y^2}-\sqrt{x-5y}\)
\(=\sqrt{\left(x-5y\right)\left(x+5y\right)}-\sqrt{x-5y}\)
\(=\sqrt{x-5y}.\sqrt{x+5y}-\sqrt{x-5y}\)
\(=\sqrt{x-5y}\left(\sqrt{x+5y}-1\right)\)
\(a,\)\(7\sqrt{ab}+7b-\sqrt{a}-\sqrt{b}\)
\(=7\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(7\sqrt{b}-1\right)\)
\(b,a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}\)
\(=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}-1\right)\)
\(c,\sqrt{x^2-25y^2}-\sqrt{x-5y}\)
\(=\sqrt{\left(x-5y\right)\left(x+5y\right)}-\sqrt{x-5y}\)
\(=\sqrt{x-5y}\left(\sqrt{x-5y}-1\right)\)
\(M=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+\left(\sqrt{x-1}\right)^2=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)
\(=\sqrt{x-1}\left(6-\left(x-1\right)+\sqrt{x-1}\right)\)( đến đây bạn có thể đặt \(\sqrt{x-1}=t\),t>=0 rồi giải)
\(=-\sqrt{x-1}\left(\sqrt{x-1}-3\right)\left(\sqrt{x-1}+2\right)\)