Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Không gian mẫu là: Ω = 6 4
TH1: Môn Toán trùng mã đề thi môn Tiếng Anh không trùng có:
Bạn Hùng chọn 1 mã toán có 6 cách và 6 cách chọn mã môn Tiếng Anh khi đó Vương có 1 cách là phải giống Hùng mã Toán và 5 cách chọn mã Tiếng Anh có 6.1.6.5 = 180 cách.
TH2: Môn Tiếng Anh trùng mã đề thi môn Toán không trùng có: 6.1.6.5 = 180 cách.
Vậy P = 180 + 180 6 4 = 5 18 .
Vì các học sinh lớp 10A1 đều học giỏi ít nhất một trong hai môn Toán hoặc Tiếng Anh nên số học sinh của lớp là: 30 + 25 - 16 = 39 (học sinh).
Chọn C.
Vì các học sinh lớp 10A1 đều học giỏi ít nhất một trong hai môn Toán hoặc Tiếng Anh nên số học sinh của lớp là: 30 + 25 - 16 = 39 (học sinh).
Chọn C.
Hai bạn Bình và Lan cùng 1 mã đề, cùng 1 môn thi (Toán hoặc TA) có 24 cách.
Môn còn lại khác nhau ⇒ có 24.23 cách chọn.
Do đó, có 2.24.24.23 = 26496 cách để Bình, Lan có chung mã đề.
Vậy xác suất cần tính là P = 26496 24 2 . 24 2 = 23 288 .
Đáp án C.
Phương pháp:
Xác suất của biến cố A:
P A = n A n Ω .
Cách giải:
Số phần tử của không gian mẫu : n Ω = 24 4
A: “Bình và Lan có chung đúng một mã đề thi”
- Chọn một môn chung mã đề thi có : 2 cách
- Chọn một mã chung có: 24 cách
- Chọn mã môn còn lại:
+) Cho Bình: 24 cách
+) Cho Lan: 23 cách
Xác suất:
P A = n A n Ω = 2.24.24.23 24 4 = 23 288
Đáp án B
Không gian mẫu n Ω = C 7 4
Gọi biến cố A: “Minh Anh được chọn trong 4 học sinh được chọn đi thi.”
+ Chọn Minh Anh đi thi có 1 cách.
+ Chọn 3 bạn trong 6 bạn còn lại có C 6 3 cách.
Suy ra n A = 1. C 6 3 = 20.
Vậy xác suất để Minh Anh được chọn đi thi là: P A = n A n Ω = 20 35 = 4 7 .
Vì trong số 100 học sinh chỉ có 25 học sinh đặc biệt nói được 2 đến 3 thứ tiếng nên số học sinh còn lại sẽ chỉ nói được 1 thứ tiếng
=>Số học sinh chỉ nói được 1 thứ tiếng là :
100 - (8 + 12 +10 +5) = 75(Học sinh)
Tui nghĩ vậy đó
Cũng 3 năm r chắc chị cũng giải đc r đúng ko ???? :)))
Bùi Thị Thùy Linh
280 T^T
200. ấn lụi sao mà ko trúng câu nào hết . tụi cậu đc sử dụng google dich ko