K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

\(A=\dfrac{2x+1}{4\sqrt{x}}=\dfrac{\sqrt{x}}{2}+\dfrac{1}{4\sqrt{x}}\ge2\sqrt{\dfrac{\sqrt{x}}{8\sqrt{x}}}=2\sqrt{\dfrac{1}{8}}=\dfrac{\sqrt{2}}{2}=\dfrac{1}{2}\cdot\sqrt{2}>\dfrac{1}{2}\left(cosi\right)\)

 

27 tháng 8 2015

Đề bài sai nhé, tìm GTNN chứ không phải GTLN. Bài này không có GTLN.

Biệt thức \(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\) với mọi \(m\). Do đó phương trình đã cho luôn có 2 nghiệm phân biệt.

Theo định lý Vi-et ta có \(x_1+x_2=m-1,x_1x_2=-m^2+m-2\to x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(\to x_1^2+x_2^2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5.\)

Giá trị lớn nhất không tồn tại vì khi m lớn tùy ý thì \(x_1^2+x_2^2\) lớn tùy ý.

Ta có \(3m^2-4m+5=\frac{1}{3}\left(3m-2\right)^2+5-\frac{4}{3}\ge5-\frac{4}{3}=\frac{11}{3}.\) Suy ra \(x_1^2+x_2^2\ge\frac{11}{3}.\) Dấu bằng xảy ra khi và chỉ khi \(m=\frac{2}{3}\). Vậy \(m=\frac{2}{3}\) thì \(x_1^2+x_2^2\)  đạt giá trị nhỏ nhất.

25 tháng 5 2019

Hoành độ giao điểm (P) và (d) là nghiệm của phương trình

\(x^2=-2ax-4a\)

\(\Leftrightarrow x^2+2ax+4a=0\)

Để (d) cắt (P) tại 2 điểm phân biệt thì pt trên có 2 nghiệm phân biệt 

Tức là \(\Delta'>0\)\(\Leftrightarrow a^2-4a>0\Leftrightarrow\orbr{\begin{cases}a< 0\\a>4\end{cases}}\)

Theo ht VI-ét \(\hept{\begin{cases}x_1+x_2=-2a\\x_1x_2=4a\end{cases}}\)

Ta có \(\left|x_1\right|+\left|x_2\right|=3\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=9\)

\(\Leftrightarrow x_1^2+2\left|x_1x_2\right|+x_2^2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+2\left|x_1x_2\right|-2x_1x_2=9\)

\(\Leftrightarrow4a^2+8\left|a\right|-8a=9\)

*Nếu a < 0 thì \(4a^2-8a-8a=9\)

              \(\Leftrightarrow4a^2-16a-9=0\)

                \(\Leftrightarrow\orbr{\begin{cases}a=\frac{9}{2}\left(L\right)\\a=\frac{-1}{2}\left(tm\right)\end{cases}}\)

*Nếu a > 4 thì \(4a^2+8a-8a=9\)

              \(\Leftrightarrow a^2=\frac{9}{4}\)

               \(\Leftrightarrow a=\pm\frac{3}{2}\)(Loại)

Vậy  \(a=-\frac{1}{2}\)

1 tháng 3 2020

b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)

\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

Vậy pt (1) có 2 nghiệm x1,x2 với mọi m

Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)

<=>\(4m^2-8m+4+2m+6=10\)

<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)

<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)

c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)

Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)

<=>\(2x_1x_2+x_1+x_2=-8\)

21 tháng 4 2020

a) \(x^3_1+x_2^3=\left(x_1+x_2\right)\left(x^2_1-x_1x_2+x^2_2\right)=\left(x_1+x_2\right)\left(x^2_1+2x_1x_2-3x_1x_2+x^2_2\right).\)(1)

Áp dụng Đen-ta: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)

\(\left(x_1+x_2\right)^2=25.\)

<=> \(x^2_1+x_2^2+2x_1x_2=25.\)

(1) 5.(25-3)=5.22=110

Câu 2:

\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)

ta có:\(x^2_1+x^2_2+2x_1x_2=25.\Rightarrow x^2_1+x^2_2=23\Rightarrow\left(x^2_1+x^2_2\right)^2=529.\)

\(\Leftrightarrow x^4_1+x^4_2+2x^2_1x^2_2=529.\)

\(\Rightarrow x^4_1+x^4_2=527\)

học tốt

30 tháng 6 2017

\(x^2+7x=810\)

\(\Leftrightarrow\left(x^2+2\cdot\frac{7}{2}\cdot x+\frac{49}{4}\right)=810+\frac{49}{4}\)

\(\Leftrightarrow\left(x+\frac{7}{2}\right)^2=\frac{3289}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{\sqrt{3289}}{2}\\x+\frac{7}{2}=\frac{-\sqrt{3289}}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{3289}-7}{2}\\x=\frac{-\sqrt{3289}-7}{2}\end{cases}}\)

11 tháng 6 2017

\(\Delta=8>0\) nên phương trình luôn có 2 nghiệm.

Theo viet: x1 + x2 = 2;   x1*x2 = -1 

Phương trình cần tìm có 2 nghiệm là -xvà -x2

S= - x1 - x2 = -(x1 + x2) = -2

P= (-x1)*(-x2) = x1*x2 = -1

Vậy phương trình cần tìm là: X2 - SX + P = X2 + 2X - 1