Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có theo công thức lượng giác :
xét trong tam giác vuông AHB ta có AK.AB=AH2
mặt khác trong tam giác vuông ABC có : AH2=HC.HB
=> AK.AB=HB.HC (=AH2)
a) tam giác AKH vuông tại K và tam giác AHB vuông tại H có
góc KAH =góc HAB
=> tam giác AKH đồng dạng tam giác AHB (g-g)
=> AK/AH=AH/AB
=> AH^2=AK.AB (1)
tam giác ABC vuông tại A=> AH^2=BH.CH (hệ thức lượng tam giác vuông )
(1),(2)=> AK.AB=BH.CH (đpcm)
b) đề sai bn nhé phải là cm AB^2/AC^2=HB/HC
ta có AB^2=BH.BC (hệ thức lượng tam giác vuông )
ta có AC^2=HC.BC (hệ thức lượng tam giác vuông )
=> \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\left(đpcm\right)\)
theo hệ thức lượng trong tam giác vuông ta có :
\(AC^2=HC.BC\)
\(AB^2=HB.BC\) chia các vế vs nhau ta được : \(\frac{AC^2}{AB^2}=\frac{HC}{HB}\)=> \(\frac{HC}{HB}=\left(\sqrt{2}\right)^2=2\)
Ta có : HC = HB + 2 =>\(\frac{HB+2}{HB}=2\)=> HB = 2
=> HC = 2 + 2 = 4 => BC = HB + HC = 2 + 4 = 6
\(AB^2=2.6=12\)=> AB = \(\sqrt{12}=2\sqrt{3}\)
\(\frac{AC}{AB}=\sqrt{2}\)=> \(\frac{AC}{2\sqrt{3}}=\sqrt{2}\)=> AC = \(2\sqrt{6}\)
1: Xét ΔABH vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
2: \(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2\)
4: \(4\cdot OE\cdot OF=2OE\cdot2OF=FE\cdot AH=AH^2\)
\(HB\cdot HC=AH^2\)
Do đó: \(4\cdot OE\cdot OF=HB\cdot HC\)
A B C H D E
a) Xét tam giác ABC vuông tại A có AH là đường cao => AB2 = BH.BC; AC2 = HC.BC (Hệ thức lượng trong tam giác vuông)
Do đó: \(\frac{AB^2}{AC^2}=\frac{HB.BC}{HC.BC}=\frac{HB}{HC}\)
b) Từ \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)=> \(\frac{AB^4}{AC^4}=\frac{HB^2}{HC^2}\)
Xét tam giác AHB vuông tại H có HD là đường cao => BH2 = BD.AB ( Hệ thức lượng)
Xét tam giác AHC vuông tại H có HE là đường cao => HC2 = EC.AC
Do đó: \(\frac{AB^4}{AC^4}=\frac{BD.AB}{EC.AC}\)=> \(\frac{AB^3}{AC^3}=\frac{BD}{EC}\)