Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E H I K
Hạ đường cao AH.
a) \(\Delta BHA=\Delta DIB\)(Cạnh huyền góc nhọn) \(\Rightarrow BI=AH\)(2 cạnh tương ứng) \(\left(1\right)\)
\(\Delta AHC=\Delta CKE\)(Cạnh huyền góc nhọn) \(\Rightarrow\hept{\begin{cases}AH=CK\left(2\right)\\EK=HC\end{cases}}\)(2 cặp cạnh tương ứng)
Từ (1) và (2) \(\Rightarrow BI=CK\)
b) Ta có: \(BC=BH+HC\). Mà \(DI=BH\)(2 cạnh tương ứng) và \(EK=HC\)(cmt)
\(\Rightarrow BC=DI+EK\)
a) Vẽ AH _|_ BC (H thuộc BC) của \(\Delta ABC\)
Hai tam giác vuông AHB và BID có: \(\hept{\begin{cases}BD=AB\left(gt\right)\\\widehat{HAB}=\widehat{DBI}\end{cases}}\)
\(\Rightarrow\Delta AHB=\Delta BID\left(ch-gn\right)\)
=> AH _|_ BI (1) và DI=BH
Xét 2 tam giác vuông AHC và CKE có: \(\hept{\begin{cases}\widehat{HAC}=\widehat{ECK}\\AC=CE\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AHC=\Delta CKE\left(ch-gn\right)\Rightarrow AH=CK\left(2\right)\)
Từ (1) và (2) => BI=CK và EK=BC
b) Ta có DI=BH (chứng minh trên câu a)
Tương tự ta cũng có EK=BC
Từ đó BC=BH+HC=DI+EK
A B C D E
Trên nửa mặt phẳng bờ AD có chứa điểm C, dựng tam giác đều AED.
Ta có ^ADC = 1800 - ^ABC - ^ACB - ^ACD = 300 => ^ADC = ^ADE/2 => ^ADC = ^EDC
Kết hợp với DA = DE ta được \(\Delta\)DCA = \(\Delta\)DCE (c.g.c) => ^DCE = ^DCA = 1100
Từ đó ^ACE = 3600 - 2^DCA = 3600 - 2.1100 = 1400 => ^ACE = ^CAB
Đồng thời CE = CA (2 cạnh tương ứng) = AB. Xét \(\Delta\)ABC và \(\Delta\)CEA có:
AC chung, ^CAB = ^ACE, AB = CE (cmt) => \(\Delta\)ABC = \(\Delta\)CEA (c.g.c)
Suy ra BC = EA (2 cạnh tương ứng) = AD (Do \(\Delta\)AED đều). Vậy AD = BC (đpcm).
a, + Kẻ AH⊥BC; H∈BC
+ Xét ΔDIB và ΔBHA ta có
I1ˆ=H1ˆ=90o
B1ˆ=A1ˆ (cùng phụ với B2ˆ)
BD=AB (ΔABD vuông cân ở B)
→ΔDIB=ΔBHA (ch-gn)
→IB=AH (2 cạnh tương ứng) (1)
+ Xét ΔCKE và ΔAHC ta có
H2ˆ=K1ˆ=90o
A1ˆ=C2ˆ (cùng phụ với C1ˆ)
CE=AC (ΔACE vuông cân ở C)
→ΔCKE=ΔAHC (ch-gn)
→CK=AH (2 cạnh tương ứng) (2)
+ Từ (1) và (2) →CK=BI (đpcm)
b, + Ta có ΔDIB=ΔBHA→DI=BH (2 cạnh tương ứng)
+ Ta có ΔCKE=ΔAHC→EK=HC (2 cạnh tương ứng)
+ Ta có BC=BH+CH=DI+EK (đpcm)
Câu 1.
Ta có : \(\hept{\begin{cases}\sqrt{17}>\sqrt{16}\\\sqrt{26}>\sqrt{25}\end{cases}}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>4+5+1=10\) (1)
Ta lại có : \(\sqrt{99}< \sqrt{100}=10\) (2)
Từ (1) và (2) \(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Thanks