Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chỉnh đề B
\(B=x^5-15x^4+16x^3-29x^2+13x\)
\(=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3+\left(2x+1\right)x^2+\left(x-1\right)x\)
\(=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(=-x=-14\)
A= x^3(x-17) + 17x(x-1) +20
=16^3.(-1) +17.16.15+20 = (16+1)(16-1).16 -16^3+20
= (16^2-1).16 -16^3+20 = 16^3-16+16^3+20=4
B= x^4(x-15) + 16x^2(x-1) + 13x . (-x+1)
= -14^4 +16.14^2.13 + 13.14.(-13)= -14^4 +(15+1).14^2.13 -13^2.14
= -14^4 +15.14^2.13 + 14^2.13 - 13^2.14= -14^4 +(14+1).14^2.(14-1) -13^2.14
= -14^4 +(14^2-1).14^2 +13.14 = -14^4 +14^4 -14^2 +13.14= 14(13-14) = -14
\(A=x^4-17x^3+17x^2-17x+20\)
\(=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+4\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+4\)
\(=4\)
Ta thấy \(x=14\Rightarrow x+1=15\)
Thay x+1=15 vào biểu thức A ta được:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-1\)
\(=x-1\)(1)
Thay x=14 vào (1) ta được :
\(A=14-1\)
\(=13\)
Vì x=14 nên x+1=15
Thay 15=x+1 vào A(x) ta có:
A(x)= x15-(x+1)x14+(x+1)x13-(x+1)x12+...+(x+1)x3-(x+1)x2+(x+1)x-15
= x15-x15-x14+x14+x13-x13-x12+...+x4+x3-x3-x2+x2-x-15
= x-15
=> A(14) = 14-15=-1
Vậy A(14) = -1
b.* Với x=0 ta có:
0.f(-4)=-2.f(0)
=> 0=-2.f(0) => f(0)=0
=> đa thức f(x) có 1 nghiệm là 0 (1)
* với x=2 ta có: 2.f(-2)=0.f(2)
=> 2.f(2)=0 => f(2)=0
=> 2 là nghiệm của đa thức f(x) (2)
Từ (1) và (2) => đa thức f(x) có ít nhất 2 nghiệm
a) đề sai không làm đc
b)Với x=0
=>0.f(-4)=-2.f(0)
=>f(0)=0
=>x=0 là nghiệm của f(x)
Với x=2
=>2.f(-2)=0
=>f(-2)=0
=>-2 là nghiệm của f(x)
Vậy đpcm
a. Rút gọn đa thức và sắp xếp theo thứ tự giảm dần của biến..
\(A\left(x\right)=13x^4+3x^2+15x+7x^2-10x^4-7x-6-8x+15\)
\(=\left(13x^4-10x^4\right)+\left(3x^2+7x^2\right)+\left(15x-7x-8x\right)+\left(15-6\right)\)
\(=3x^4+10x^2+9.\)
\(B\left(x\right)=5x^4+10-5x^2-18+3x-10x^2-3x-4x^4\)
\(=\left(5x^4-4x^4\right)+\left(-5x^2-3x^2\right)+\left(3x-3x\right)+\left(10-18\right)\)
\(=x^4-8x^2-8\)
b. Tính M = A(x) + B(x) ; N = A(x) - B(x)
\(M=A\left(x\right)+B\left(x\right)=\left(3x^4+10x^2+9\right)+\left(x^4-8x^2-8\right)\)
\(=\left(3x^4+x^4\right)+\left(10x^2-8x^2\right)+\left(10-8\right)\)
\(=4x^4+2x^2+2\)
\(N=A\left(x\right)-B\left(x\right)=\left(3x^4+10x^2+9\right)-\left(x^4-8x^2-8\right)\)
\(=3x^4+10x^2+9-x^4+8x^2+8\)
\(=\left(3x^4-x^4\right)+\left(10x^2+8x^2\right)+\left(9+8\right)\)
\(=2x^4+18x^2+17\)
B=x5-15x4+16x3-29x2+13x
B= 145-15.144+16.143-29.142+13.14
B=14.144-15.144+16.143-29.142+13.14
B=(14-15).144+16.143-29.142+13.14
B= (-1).144+16.143-29.142+13.14
B= (-1).144+16.142.14-29.142+13.14
B=(-1).144+224.142-29.142+13.14
B= (-1).144+(224-29).142+13.14
B=(-1).144+195.142+13.14
B=[(-1).143].14+195.14.14+13.14
B= (-2744).14+2730.14+13.14
B= 14.[(-2744)+2730+13]
B= 14.(-1)
B= -14