K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

Ta có :

\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+..+2016}\)

    \(=2015.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}\right)\)

    \(=2015.\left(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\right)\)

    \(=2015.\left(\frac{2}{2}+\frac{2}{2.\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{2016.\left(2016+1\right)}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2.\left(2+1\right)}+\frac{1}{3.\left(3+1\right)}+...+\frac{1}{2016.\left(2016+1\right)}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\) 

    \(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2017}\right)\)

    \(=2015.2.\left(1-\frac{1}{2017}\right)\)

    \(=2015.2.\frac{2016}{2017}\)

    =\(\frac{2015.2.2016}{2017}\)

    =\(\frac{8124480}{2017}\)

Vậy \(S=\frac{8124480}{2017}\)

 

    

7 tháng 4 2016

yeu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 tháng 4 2016

2016

24 tháng 4 2016

Ta có:

Đặt  \(A=1+2+2^2+2^3+...+2^{2015}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2016}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)

\(\Rightarrow A=2^{2016}-1=-\left(1-2^{2016}\right)\) (Đặt dấu trừ ra trước thì đổi dấu)

Ta có: \(S=\frac{A}{1-2^{2016}}=\frac{-\left(1-2^{2016}\right)}{1-2^{2016}}=-1\)

Vậy S= -1

Có đc 1 GP ko nhỉ  lolang

23 tháng 4 2016

MK ghi sai để mk sửa lại nha

25 tháng 2 2017

\(\frac{1}{3}+\frac{1}{2.3}\left(1+2\right)+\frac{1}{3.3}\left(1+2+3\right)+...+\frac{1}{3.2015}\left(1+2+3+...+2015\right)=\frac{1}{3}\left[\frac{2}{2}+\frac{1}{2}\left(\frac{2.3}{2}\right)+\frac{1}{3}\left(\frac{3.4}{2}\right)+...+\frac{1}{2015}\left(\frac{2016.2015}{2}\right)\right]=\frac{1}{3}.\frac{1}{2}\left(2+3+4+....+2016\right)=\frac{1}{6}\left(\frac{2016.2017}{2}-1\right)\)

14 tháng 4 2016

dễ thấy B=\(\frac{2015+2016}{2016+2017}\)<1

A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)=1-\(\frac{1}{2016}\)+1-\(\frac{1}{2017}\)=(1+1)-(\(\frac{1}{2016}\)+\(\frac{1}{2017}\))=2-(\(\frac{1}{2016}\)+\(\frac{1}{2017}\))

vì (\(\frac{1}{2016}\)+\(\frac{1}{2017}\))<0,5+0,5=1 suy ra 2-(\(\frac{1}{2016}\)+\(\frac{1}{2017}\))>1 mà b<1suy ra A>B

 

Ta thấy: B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)

              A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)

\(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\)\(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)

Suy ra: \(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)>\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)=\(\frac{2015+2016}{2016+2017}\)

               Hay A>B

29 tháng 3 2016

Ta có:

\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\)

\(\Rightarrow2A=2.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\right)=2.\frac{2015}{2017}\)

\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{4030}{2017}\)

\(=\frac{1}{2}-\frac{1}{x+1}=\frac{4030}{2017}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{4030}{2017}\)

Bạn xem lại đề

29 tháng 3 2016

Đề đúng rồi. co giao minh cung vua giang roi

1 tháng 2 2016

Ta thấy: \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

\(\left(\sqrt{a+b}\right)^2=a+b\)

Nếu: \(2\sqrt{ab}>0\left(a,b>0\right)\text{ thì: }\left(\sqrt{a}+\sqrt{b}\right)^2>\left(\sqrt{a+b}\right)^2\)

<=>\(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

\(B=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{5}}+....+\frac{1}{\sqrt{2013}+\sqrt{2015}}\)

\(=\frac{1}{2}.\left(\frac{2}{\sqrt{1}+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{5}}+...+\frac{2}{\sqrt{2013}-\sqrt{2014}}\right)\)

\(=\frac{1}{2}.\left(-1+\sqrt{3}-\sqrt{3}+\sqrt{5}-...-\sqrt{2013}+\sqrt{2015}\right)\)

=\(\frac{\sqrt{2015}-1}{2}\)

Xét hiệu: B-A=\(\frac{\sqrt{2015}-1}{2}-\sqrt{481}=\frac{\sqrt{2015}-1}{2}-\frac{\sqrt{1924}}{2}=\frac{\sqrt{2015}-\left(\sqrt{1}+\sqrt{1924}\right)}{2}>\frac{\sqrt{2015}-\sqrt{1+1924}}{2}\)

\(=\frac{\sqrt{2015}-\sqrt{1925}}{2}>0\Rightarrow A>B\)

1 tháng 2 2016

bỏ tên tui đi tui ráng suy nghĩ

22 tháng 2 2016

\(=\frac{\frac{8}{27}.\frac{9}{16}.\left(-1\right)}{\frac{4}{25}.\frac{-125}{1728}}=\frac{72}{5}\)

22 tháng 2 2016

limdim