\(\frac{\sqrt{3x+4}}{x-3}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 10 2019

ĐKXĐ:

a/ \(\left\{{}\begin{matrix}3x+4\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{4}{3}\\x\ne3\end{matrix}\right.\)

b/ \(x^2-5x+6\ne0\Rightarrow\left(x-2\right)\left(x-3\right)\ne0\Rightarrow\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}4-x^2\ge0\\\left(x-2\right)\left(x-3\right)\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2\le x\le2\\x\ne2\\x\ne3\end{matrix}\right.\)

\(\Rightarrow-2\le x< 2\)

d/ \(\left\{{}\begin{matrix}4-x\ge0\\2x-10\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le4\\x\ge5\end{matrix}\right.\) \(\Rightarrow x=\varnothing\)

NV
10 tháng 10 2019

ĐKXĐ:

a/ \(\left\{{}\begin{matrix}x\ge1\\4-x^2\ge0\\x\ne2\\x\ne-3\end{matrix}\right.\) \(\Rightarrow1\le x< 2\)

b/ \(\left\{{}\begin{matrix}2-x\ge0\\x^2-5x+4\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ne1\\x\ne5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ne1\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}2-3x\ge0\\1+2x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le\frac{2}{3}\\x>-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}< x\le\frac{2}{3}\)

NV
5 tháng 10 2019

ĐKXĐ:

a/ \(x+5\ne0\Rightarrow x\ne-5\)

b/ \(\left\{{}\begin{matrix}x-1\ge0\\4-x\ge0\\x-2\ne0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1\le x\le4\\x\ne2\\x\ne3\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}x-2\ne0\\x+4\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-4\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}2-x\ge0\\x^2-5x+6\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ne2\\x\ne3\end{matrix}\right.\) \(\Rightarrow x< 2\)

1 tháng 12 2019

3/ Đk : \(\left\{{}\begin{matrix}x\ne1\\y\ne0\end{matrix}\right.\), Đặt \(\frac{1}{x-1}=a\),\(\frac{1}{y}=b\), ta có :

\(\left\{{}\begin{matrix}a+8b=4\\5a+4b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{4}{9}\\b=\frac{4}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=\frac{4}{9}\\\frac{1}{y}=\frac{4}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{13}{9}\\y=\frac{9}{4}\end{matrix}\right.\)(TM)

Vậy ...

6 tháng 7 2019

a) y xác định \(\Leftrightarrow2x^2-5x+2\ne0\Leftrightarrow\left(x-2\right)\left(2x-1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\2x-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{1}{2}\end{matrix}\right.\). Vậy tập xác định D = R / { 2; 1/2}

b) y xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\2x+4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-2\end{matrix}\right.\).

Vậy tập xác định D = \([-2;+\infty)/1\)

7 tháng 7 2019

y xác định \(\Leftrightarrow x^2-3x+m-1\ne0\forall x\in R\)

suy ra phương trình x2 - 3x + m - 1 = 0 vô nghiệm

\(\Rightarrow\Delta=9-4\left(m-1\right)< 0\Leftrightarrow9-4m+4< 0\Leftrightarrow m>\frac{13}{4}\)

\(\Rightarrow m\in\left(\frac{13}{4};+\infty\right)\)

10 tháng 10 2019

undefinedundefinedundefined