Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) \(\dfrac{5}{18}+\dfrac{4}{7}+\dfrac{13}{18}+\dfrac{3}{7}\)
\(=\left(\dfrac{5}{18}+\dfrac{13}{18}\right)+\left(\dfrac{4}{7}+\dfrac{3}{7}\right)\)
\(=1+1=2\)
b) \(\dfrac{4}{9}.\dfrac{5}{19}.\dfrac{9}{4}\)
\(=\left(\dfrac{4}{9}.\dfrac{9}{4}\right).\dfrac{5}{19}\)
\(=1.\dfrac{5}{19}=\dfrac{5}{19}\)
tik mik nha!!!
2) \(\dfrac{4}{9}.\dfrac{5}{19}.\dfrac{9}{4} =(\dfrac{4}{9}.\dfrac{9}{4}).\dfrac{5}{19} =1.\dfrac{5}{19} =\dfrac{5}{19}\)
\(x+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{41.45}=-\dfrac{37}{45}\\ x+\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{44}-\dfrac{1}{45}\right)=-\dfrac{37}{45}\\ x+\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=-\dfrac{37}{45}\\ x+\dfrac{8}{45}=-\dfrac{37}{45}\\ x=-\dfrac{37}{45}-\dfrac{8}{45}\\ x=-1\)
10)\(\left(\dfrac{2x}{5}-1\right):\left(-5\right)=\dfrac{1}{4}\)
\(\dfrac{2x}{5}-1=\dfrac{1}{4}.\left(-5\right)\)
\(\dfrac{2x}{5}-1=-\dfrac{5}{4}\)
\(\dfrac{2x}{5}=-\dfrac{5}{4}+1\)
\(\dfrac{2x}{5}=-\dfrac{1}{4}\)
\(\dfrac{8x}{20}=-\dfrac{5}{20}\)
\(\Leftrightarrow8x=-5\)
\(\Rightarrow x=-5:8\)
\(x=-\dfrac{5}{8}\)
12)\(\left(3\dfrac{1}{4}:x\right).\left(-1\dfrac{1}{4}\right)=-\dfrac{5}{3}-\dfrac{5}{6}\)
\(\left(\dfrac{13}{4}:x\right).\left(-\dfrac{5}{4}\right)=-\dfrac{5}{2}\)
\(\dfrac{13}{4}:x=-\dfrac{5}{2}:\left(-\dfrac{5}{4}\right)\)
\(\dfrac{13}{4}:x=2\)
\(x=\dfrac{13}{4}:2\)
\(x=\dfrac{13}{8}\)
3) \(\dfrac{3}{4}.x-\dfrac{5}{3}.x=\dfrac{7}{12}\)
\(\left(\dfrac{3}{4}-\dfrac{5}{3}\right).x=\dfrac{7}{12}\)
\(-\dfrac{11}{12}.x=\dfrac{7}{12}\)
\(x=\dfrac{7}{12}:\left(-\dfrac{11}{12}\right)\)
\(x=-\dfrac{7}{11}\)
\(\dfrac{x+24}{1996}+\dfrac{x+25}{1995}+\dfrac{x+26}{1994}+\dfrac{x+27}{1993}+\dfrac{x+2036}{4}=0\)
\(\Rightarrow\left(\dfrac{x+24}{1996}+1\right)+\left(\dfrac{x+25}{1995}+1\right)+\left(\dfrac{x+26}{1994}+1\right)+\left(\dfrac{x+27}{1993}+1\right)+\left(\dfrac{x+2036}{4}-4\right)=0\)\(\Rightarrow\dfrac{x+2020}{1996}+\dfrac{x+2020}{1995}+\dfrac{x+2020}{1994}+\dfrac{x+2020}{1993}+\dfrac{x+2020}{4}=0\)\(\Rightarrow\left(x+2020\right)\left(\dfrac{1}{9996}+\dfrac{1}{1995}+\dfrac{1}{1994}+\dfrac{1}{1993}+\dfrac{1}{4}\right)=0\)
\(\Rightarrow x+2020=0\Rightarrow x=-2020\)
1) \(\left(-1\dfrac{1}{5}+x\right):\left(-3\dfrac{3}{5}\right)=\dfrac{-7}{4}+\dfrac{1}{4}:\dfrac{1}{8}\)
\(\Leftrightarrow\left(-1\dfrac{1}{5}+x\right):\left(-3\dfrac{3}{5}\right)=\dfrac{-7}{4}+2\)
\(\Leftrightarrow\left(-1\dfrac{1}{5}+x\right):\left(-3\dfrac{3}{5}\right)=\dfrac{1}{4}\)
\(\Leftrightarrow-1\dfrac{1}{5}+x=\dfrac{1}{4}.\left(-3\dfrac{3}{5}\right)\)
\(\Leftrightarrow-1\dfrac{1}{5}+x=\dfrac{1}{4}.\left(-\dfrac{18}{5}\right)\)
\(\Leftrightarrow-1\dfrac{1}{5}+x=-\dfrac{9}{10}\)
\(\Leftrightarrow x=\left(-\dfrac{9}{10}\right)-\left(-1\dfrac{1}{5}\right)\)
\(\Leftrightarrow x=\dfrac{3}{10}\)
1) \(2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\)
\(\Leftrightarrow2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\)
\(\Leftrightarrow\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\)
\(\Leftrightarrow\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{7}{8}+\dfrac{1}{3}\\\dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{13}{24}\\\dfrac{1}{2}x=\dfrac{29}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\left(-\dfrac{13}{24}\right):\dfrac{1}{2}\\x=\dfrac{29}{24}:\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{13}{12}\\x=\dfrac{29}{12}\end{matrix}\right.\)
2) \(\dfrac{3}{4}-2\left|2x-\dfrac{2}{3}\right|=2\)
\(\Leftrightarrow2\left|2x-\dfrac{2}{3}\right|=\dfrac{3}{4}-2\)
\(\Leftrightarrow2\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{8}\)
\(\Leftrightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{8}:2\)
\(\Leftrightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{2}{3}=\dfrac{-5}{16}\\2x-\dfrac{2}{3}=\dfrac{5}{16}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{-5}{16}+\dfrac{2}{3}\\2x=\dfrac{5}{16}+\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{17}{48}\\2x=\dfrac{47}{48}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{48}:2\\x=\dfrac{47}{48}:2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{96}\\x=\dfrac{47}{96}\end{matrix}\right.\)
7) \(\dfrac{-5}{17}+\dfrac{3}{17}\le\dfrac{x}{17}\le\dfrac{13}{17}+\dfrac{-11}{17}\)
\(\Rightarrow\dfrac{-2}{17}\le\dfrac{x}{17}\le\dfrac{2}{17}\)
\(\Rightarrow-2\le x\le2\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)
8) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
\(\Rightarrow\dfrac{2}{3}\left(\dfrac{6}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{6}{12}-\dfrac{2}{12}\right)\)
\(\Rightarrow\dfrac{2}{3}\cdot\dfrac{11}{12}\le\dfrac{x}{18}\le\dfrac{7}{3}\cdot\dfrac{4}{12}\)
\(\Rightarrow\dfrac{22}{36}\le\dfrac{x}{18}\le\dfrac{28}{36}\)
\(\Rightarrow\dfrac{11}{18}\le\dfrac{x}{18}\le\dfrac{14}{18}\)
\(\Rightarrow x\in\left\{11;12;13;14\right\}\)
8) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\\ \dfrac{2}{3}\left(\dfrac{6}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{3}{6}-\dfrac{1}{6}\right)\\ \dfrac{2}{3}.\dfrac{11}{12}\le\dfrac{x}{18}\le\dfrac{7}{3}.\dfrac{2}{6}\\ \dfrac{11}{18}\le\dfrac{x}{18}\le\dfrac{14}{18}\\ \Rightarrow11\le x\le14\\ \Rightarrow x\in\left\{11;12;13;14\right\}\)