K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

a, Đặt \(x=\frac{1}{117}\), \(y=\frac{1}{119}\) ta có:

\(A=\left(3+x\right)y-4x\left(5+1-y\right)-5xy+24x\)

\(=3y+xy-24x+4xy-5xy+24x\)

\(=3y\)

\(=\frac{3}{119}\)

b, Thay 8 bằng x + 1 ta có:\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)

\(=7-5\)

= 2

27 tháng 1 2017

a) Đặt a = \(\frac{1}{117}\)và b = \(\frac{1}{119}\)

Theo đề ta có:

A = (3 + a) b - 4a ( 5+1-b)-5ab+24a

= 3b + ab - 20a -4a + 4ab - 5ab + 24a

= 3b

= 1.\(\frac{1}{119}\) = \(\frac{3}{119}\)

Vậy A = \(\frac{3}{119}\)

ok

18 tháng 6 2017

Dịch k ra viết bằng ct toán đi

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

5 tháng 9 2018

Gợi ý:

Đặt:  

\(\frac{1}{117}=a\)

\(\frac{1}{119}=b\)

Đến đây bạn thế a, b vào A rồi thu gọn, sau đó tính

16 tháng 6 2017

1)Ta có:x=4=>x+1=5(1)

Mặt khác:A=x5-5x4+5x3-5x2+5x-1(2)

Thay (1) vào (2) ta có:

A=x5-(x+1)x4+(x+1)x3-(x+1)x2+(x+1)x-1

=>A=x5-x5-x4+x4+x3-x3-x2+x2+x-1

=>A=x-1=4-1=3

2)Vì a:5 dư 2,b:5 dư 3 nên:

Đặt:a=5x+2;b=5y+3

Khi đó:ab=(5x+2)(5y+3)=25xy+10y+15x+6

=5(5xy+2y+3x+1)+1

Vì 5(5xy+2y+3x+1)\(⋮\)5 nên =>5(5xy+2y+3x+1)+1:5 dư 1 hay ab:5 dư 1

Vậy ab:5 dư 1

16 tháng 6 2017

3)

a)Nhận xét:

a1=1

a2=1+2=3

a3=1+2+3=6

a4=1+2+3+4=10

Khi đó:a100=1+2+3+...+100=\(\dfrac{100.101}{2}\)=5050

an=1+2+3+...+n=\(\dfrac{n\left(n+1\right)}{2}\)

b)Gọi 2 số hạng liên tiếp là n-1;n

=>an-1=1+2+3+...+(n-1)=\(\dfrac{\left(n-1\right)n}{2}\)

=>an=\(\dfrac{\left(n+1\right)n}{2}\)(ở câu a)

Khi đó:tổng 2 số hạng liên tiếp là an+an-1 là:

an+an-1=\(\dfrac{n\left(n+1\right)+n\left(n-1\right)}{2}\)=\(\dfrac{2n.n}{2}\)

=\(\dfrac{2n^2}{2}\)=n2 là số chính phương

Vậy tổng 2 số hạng liên tiếp là số chính phương

Bài 1:

Gọi bốn số liên tiếp cần tìm là a;a+1;a+2;a+3(Điều kiện: a∈N)

Theo đề bài, ta có:

\(a\cdot\left(a+1\right)+146=\left(a+2\right)\left(a+3\right)\)
\(\Leftrightarrow a^2+a+146=a^2+5a+6\)

\(\Leftrightarrow a^2+a+146-a^2-5a-6=0\)

\(\Leftrightarrow-4a+140=0\)

\(\Leftrightarrow-4a=-140\)

hay a=35(nhận)

Vậy: Bốn số liên tiếp cần tìm là 35;36;37;38

Bài 2:

Ta có: \(N=3\cdot\frac{1}{117}\cdot\frac{1}{119}-\frac{4}{117}\cdot5\frac{118}{119}-\frac{5}{117\cdot119}+\frac{8}{39}\)

\(=3\cdot\frac{1}{117\cdot119}-2852\cdot\frac{1}{117\cdot119}-5\cdot\frac{1}{117\cdot119}+\frac{8}{39}\)

\(=\frac{-2854}{117\cdot119}+\frac{8}{39}\)

\(=\frac{-2854}{39\cdot357}+\frac{2856}{39\cdot357}=\frac{2}{20943}\)