K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

câu 1 :

hình : A B C M

ta có : \(\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AB}+\left(\overrightarrow{MA}+\overrightarrow{MC}\right)\)

\(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{AB}\) \(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{0}\)

\(\Rightarrow\) \(M\) là trung điểm \(AC\)

vậy \(M\) là trung điểm \(AC\)

1 tháng 11 2017

bài 2 :

hình : A B C M điểm M nằm ở vị trí bất kì sao cho CB = AM

a) ta có \(\left\{{}\begin{matrix}\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{CB}\\\overrightarrow{BM}-\overrightarrow{BA}=\overrightarrow{AM}\end{matrix}\right.\) \(\Rightarrow\left|\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{BM}-\overrightarrow{BA}\right|\Leftrightarrow\left|\overrightarrow{CB}\right|=\left|\overrightarrow{AM}\right|\)

\(\Leftrightarrow CB=AM\) vậy

b) đề đọc không hiểu gì hết ; điểm \(D\) nằm ở vị trí nào

5 tháng 8 2019

\(\text{a) }\left|2\overrightarrow{MA}+3\overrightarrow{MB}\right|=\left|3\overrightarrow{MB}-2\overrightarrow{MC}\right|\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}\right)^2=\left(3\overrightarrow{MB}-2\overrightarrow{MC}\right)^2\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}\right)^2-\left(3\overrightarrow{MB}-2\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}-3\overrightarrow{MB}+2\overrightarrow{MC}\right)\left(2\overrightarrow{MA}+3\overrightarrow{MB}+3\overrightarrow{MB}-2\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MC}\right)\left[2\left(\overrightarrow{MA}-\overrightarrow{MC}\right)+6\overrightarrow{MB}\right]=0\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MC}\right)\left(\overrightarrow{CA}+3\overrightarrow{MB}\right)=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MC}=0\\\overrightarrow{CA}+3\overrightarrow{MB}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}=-\overrightarrow{MC}\\\overrightarrow{CA}=-3\overrightarrow{MB}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}M;A;C\text{ thẳng hàng };M\text{ nằm giữa }A;C\\MA=MC\end{matrix}\right.\\\left\{{}\begin{matrix}CA//MB\\CA=3MB\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}M\text{ là trung điểm }AC\\CA//MB;CA=3MB\end{matrix}\right.\)

Vậy......

5 tháng 8 2019

\(b\text{) }\left|4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2=\left(2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)^2\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2-\left(2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}-2\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MB}+2\overrightarrow{MC}\right)\cdot6\overrightarrow{MA}=0\\ \Rightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}=0\\\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}M\equiv A\\M\text{ là trọng tâm }\Delta ABC\end{matrix}\right.\)Vậy...........

6 tháng 2 2020

một đường tròn

6 tháng 11 2020

d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)

Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)

\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)

\(\Rightarrow4MP=0\Rightarrow M\equiv P\)

6 tháng 11 2020

Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC

a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)

\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC

b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)

\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)

\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)

NV
26 tháng 10 2020

Dựng hình bình hành ABDC \(\Rightarrow\overrightarrow{AB}=-\overrightarrow{DC}\) ; \(\overrightarrow{AC}=-\overrightarrow{DB}\)

a/

\(\left|\overrightarrow{MC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\Leftrightarrow\left|\overrightarrow{MD}+\overrightarrow{DC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MD}\right|=\left|\overrightarrow{MA}\right|\)

\(\Rightarrow\) Tập hợp M là trung trực của đoạn thẳng AD

b/ \(\left|\overrightarrow{MA}+\overrightarrow{AC}\right|=\left|\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MB}+\overrightarrow{AC}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}\right|\)

Tập hợp M là trung trực đoạn CD

c/Dựng hình bình hành AEBC \(\Rightarrow\overrightarrow{EB}=-\overrightarrow{CA}\)

\(\left|\overrightarrow{MB}+\overrightarrow{CA}\right|=\left|\overrightarrow{MC}+\overrightarrow{BM}\right|\Leftrightarrow\left|\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{CA}\right|=\left|\overrightarrow{BC}\right|\)

\(\Leftrightarrow\left|\overrightarrow{ME}\right|=\left|\overrightarrow{BC}\right|\)

Tập hợp M là đường tròn tâm E bán kính BC