Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N = 1 - 2/2.3 + 1 - 2/3.4 +.....+ 1 - 2/99.100
= 98 - 2.(1/2.3 + 1/3.4 + ...... + 1/99.100)
= 98 - 2.(1/2-1/3+1/3-1/4+....+1/99-1/100)
= 98 - 2.(1/2-1/100)
= 98 - 2.49/100 = 98-49/50 < 98
Mà 49/50 < 1
=> N > 98-1 = 97
=> 97 < N < 98
Tk mk nha
Ta có \(\frac{a\left(a+3\right)}{\left(a+1\right)\left(a+2\right)}=\frac{\left(a+1-1\right)\left(a+2+1\right)}{\left(a+1\right)\left(a+2\right)}=\frac{\left(a+1\right)\left(a+2\right)-\left(a+2\right)+\left(a+1\right)-1}{\left(a+1\right)\left(a+2\right)}\\ \)
= \(1-\frac{2}{\left(a+1\right)\left(a+2\right)}\)
Áp dụng ta có N = \(98-\left(\frac{2}{2.3}+...+\frac{2}{99.100}\right)=98-2.\left(\frac{1}{2.3}+...+\frac{1}{99.100}\right)=98-2.\left(\frac{1}{2}-\frac{1}{100}\right)>97\)
Lời giải:
$M=\frac{1.4}{2.3}+\frac{2.5}{3.4}+\frac{3.6}{4.5}+...+\frac{98.101}{99.100}$
$=1-\frac{2}{2.3}+1-\frac{2}{3.4}+1-\frac{2}{4.5}+...+1-\frac{2}{99.100}$
$=(1+1+....+1)-2(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100})$
$=98-2(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100})$
$=98-2(\frac{1}{2}-\frac{1}{100})$
$=97+\frac{1}{50}=97,02$
E=\(\frac{1.2.3.....97.98}{2.3.4.....98.99}\)+\(\frac{4.5.6....100.101}{3.4.5...99.100}\)
E=\(\frac{1}{99}\)+\(\frac{101}{3}\)
E=\(\frac{304}{99}\)
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
TA có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\left(đpcm\right)\)