K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Đặt \(A=\frac{a+1}{b}+\frac{b+1}{a}=\left(\frac{a+1}{b}+1\right)+\left(\frac{b+1}{a}+1\right)-2=\left(a+b+1\right)\left(\frac{1}{a}+\frac{1}{b}\right)-2\)

Vì A có giá trị là một số tự nhiên nên \(\frac{1}{a}+\frac{1}{b}\) phải có giá trị là số tự nhiên hay

\(\frac{a+b}{ab}\) là một số tự nhiên \(\Rightarrow\left(a+b\right)⋮ab\)

Vì d là ƯCLN(a,b) nên \(a=dm,b=dn\) \(\Rightarrow\begin{cases}a+b=d\left(m+n\right)\\ab=d^2mn\end{cases}\) (m,n thuộc N)

\(\Rightarrow\frac{a+b}{ab}=\frac{d\left(m+n\right)}{d^2mn}=\frac{m+n}{dmn}\)

=> (m+n) chia hết cho dmn \(\Rightarrow m+n\ge d\)

\(\Rightarrow d\left(m+n\right)\ge d^2\) hay \(a+b\ge d^2\)

 

 

4 tháng 9 2019

Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath

2 tháng 5 2020

Ta có: 

\(\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+a+b^2+b}{ab}\)

Vì \(\frac{a+1}{b}+\frac{b+1}{a}\) là số tự nhiên 

=> \(\frac{a^2+a+b^2+b}{ab}\) là số tự nhiên 

=> \(a^2+a+b^2+b⋮ab\)

Lại có: d = ( a; b ) => \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow ab⋮d^2;a^2⋮d^2;b^2⋮d^2\)

=> \(a^2+a+b^2+b⋮d^2\) và \(a^2+b^2⋮d^2\)

=> \(a+b⋮d^2\)

=> \(a+b\ge d^2\)

  1. Ta có : \(\frac{a+1}{b}\)\(\frac{b+1}{a}\)\(\frac{a.\left(a-1\right)+b\left(b+1\right)}{ab}\)=\(\frac{a^2+a+b^2+b}{a.b}\)\(\frac{a^2+b^2+a+b}{a.b}\)có giá trị là STN khi a^2 + b^2 +a+b.a+b
  2. UCLN (a,b) = d
  3. => a chia hết cho 1
  4.      b chia hết cho 1 =>a chia hết cho d
  5.                                      b chia hết cho d
  6.                                      b^2 chia hết cho d^2
  7.                                       a^2 chia hết cho d^2
  8. => a^2 + b^2 + a +b{ d^2 => a +b chia hết cho d^2
  9.                                               a+b > hoặc khác d^2
4 tháng 9 2019

Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

1 tháng 8 2016

Em vào mục câu hỏi tương tự nhé !

1 tháng 8 2016

không có ạ

4 tháng 9 2019

a, b là số tự nhiên khác 0 

suy ra \(\frac{a+1}{b}+\frac{b+1}{a}>0\)

=> \(\frac{a+1}{b}+\frac{b+1}{a}\)là số tự nhiên.

Tiếp theo em tham khảo bài làm dưới link này nhé.

Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath

3 tháng 3 2020

Câu này đã có trong câu hỏi tương tự hoặc banjc so thể vào Toán vui hằng tuần, đã có bài toán này rồi nhé !

3 tháng 3 2020

https://olm.vn/hoi-dap/detail/7521148738.html bạn tham khảo nha

26 tháng 12 2014

Bài 1:

Xét 2 TH : 
1) p chẵn : 
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào. 

2) p lẻ : 
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn 
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1) 
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn 
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại) 
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2) 
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3) 

+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ 
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án. 
+ Nếu p > 5 : 
...Khi đó p-2; p; p+2 đều lớn hơn 3 
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại) 
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại) 

Vậy chỉ có 1 đáp án là p = 5.

11 tháng 5 2020

ko biết làm