Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 12 + 22 + 32 + ..... + 102 = 385
=> 1002(12 + 22 + 32 + ..... + 102) = 385
<=> 1002 + 2002 + 3002 + .... + 10002 = 385 . 1002
<=> 1002 + 2002 + 3002 + .... + 10002 = 3850000
ta có : \(A=100^2+200^2+300^2+...+1000^2\)
\(A=\left(1.100\right)^2+\left(2.100\right)^2+\left(3.100\right)^2+...+\left(10.100\right)^2\)
\(A=100^2\left(1^2+2^2+3^3+...+10^2\right)\)
\(A=10000.385=3850000\)
vậy \(A=3850000\)
Ta có:A=1002+2002+3002+...+10002
=1002.12+1002.22+1002.32+...+1002.102
=1002(12+22+32+...102)
=10000.385
=3850000
=
ta có:A= 1002+2002+3002+...+10002
A=1002.(12+22+32+..102)
A=10000.385
A=3850000
mk nghĩ thế này: xét k E N* ta có:
(100-k)2 - (100-k).100+5000
= 1002 - 2.100.k +k2 - 1002 + 100k+ 5000
= k2 - 100k + 5000
lần lượt thay k = 1;2;3;...;99 ta có
12 - 100+ 5000 = 992 - 9900+ 5000
22 - 200+ 5000 = 982 - 9800+ 500
...
992 - 9900+ 5000 = 12 - 100 + 5000
ta có: 2A = \(\frac{1^2+99^2}{1^2-100+5000}+\frac{2^2+98^2}{2^2-200+5000}+...+\frac{99^2+1^2}{99^2-9900+5000}\)
mặt khác k2 + (100-k)2 = k3 + 1002 - 2.100k+ k2 = 2(k2 - 100k + 5000)
do đó \(\frac{k^2+\left(100-k\right)^2}{k^2-100k+5000}=2\)
=> 2A = 2+2+2+...+2 ( có 99 số hạng là 2)
do đó A= \(\frac{2.99}{2}=99\)
duyệt đi
Ta có: 12 + 22 + 32 + … + 102 = 385
A = 1002 + 2002 + 3002 + … + 10002
= (100.1)2 + (100.2)2 + (100.3)2 + … + (100.10)2
= 1002(12 + 22 + 32 + … + 102)
= 10000 . 385 = 3850000
A=1002.12+1002.22+1002.32+...+1002.102
=1002(12+22+32+...+102)=1002.385=3850000
\(A=100^2+200^2+300^2+...+1000^2\)
\(\Rightarrow A=100\left(1^2+2^2+3^2+...+10^2\right)\)
mà \(1^2+2^2+3^2+...+10^2=385\)
\(\Rightarrow A=100.385\)
\(\Rightarrow A=38500\)
Vậy .............
\(100^2+200^2+300^2+.....+1000^2\)
\(=\left(100\times1\right)^2+\left(100\times2\right)^2+.....+\left(100\times10\right)^2\)
\(=100^2\times1^2+100^2\times2^2+.....+100^2\times10^2\)
\(=100^2\left(1^2+2^2+3^2+.....+10^2\right)\)
\(=10000\times385\)
\(=3850000\)
Kaito Kid lm chưa chính xác lắm nhg dù sao chúc cả 2 bn học tốt.
Ta có:
\(A=100^2+200^2+300^2+...+5000^2\)
\(\Rightarrow A=\left(1.100\right)^2+\left(2.100\right)^2+\left(3.100\right)^2+...+\left(50.100\right)^2\)
\(\Rightarrow A=1^2.100^2+2^2.100^2+3^2.100^2+...+50^2.100^2\)
\(\Rightarrow A=\left(1^2+2^2+3^2+...+50^2\right).100^2\)
\(\Rightarrow A=42925.100^2\)
\(\Rightarrow A=429250000\)
Vậy A = 429250000