\(x^2+px+1=0\)có hai nghiệm là a,b và phương trình 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)

Theo vi et ta có

\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và  \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)

Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)

\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)

\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)

\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)

\(=p^2-pq-pq+1+q^2-2+1\)

\(=p^2-2pq+q^2=\left(p-q\right)^2\)

5 tháng 4 2017

a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)

Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)

\(=m^2+n^2-mn-m-n+1\)

\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)

\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)

Vậy có 1 trong 2 phương trình có nghiệm

10 tháng 3 2017

\(A=\left(a+b\right)\left(b+c\right)-\left[b^2-bc-ab+ac\right]\)

\(A=ab+ac+b^2+bc-b^2+bc+ab-ac\)

\(A=2ab+2bc=2+2.2=6\)

10 tháng 3 2017

q: cái gì ở đâu?

30 tháng 10 2015

Theo hệ thức Vi-ét ta có: 

(1)   a+b=-p   và    ab=1        

(2)   c+d=-q   và    cd=1

Biến đổi vế trái VT= [(a-c)(b+d)][(b-c)(a+d)]=(ab+ad-bc-cd)(ab-cd-ac+bd)=(ad-bc)(bd-ac)=abd2-a2cd-b2cd+c2ab=d2-a2-b2+c2

mà q2-p2=(c+d)2-(a+b)2=c2+d2+2cd-a2-b2-2ab=d2-a2-b2+c2

Nên VT=VP 

16 tháng 3 2017

123456789

ko biết

26 tháng 5 2021

a) Áp dụng đl Vi-ét vào pt ta có:

x1+x2=-1.5

x1 . x2= -13

C=x1(x2+1)+x2(x1+1)

 = 2x1x2 + x1+x2

= 2.(-13) -1.5

= -26 -1.5

= -27.5

26 tháng 5 2021

a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)

Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)

\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

Nhiều thế, chắc phải đưa ra đáp thôi