Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)
Dấu "=" xảy ra khi \(x=1\)
Bài 2:
Áp dụng BĐT AM-GM ta có:
\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\) (1)
\(ab+cd\ge2\sqrt{abcd}=2\) (2)
\(ac+bd\ge2\sqrt{acbd}=2\) (3)
\(ad+bc\ge2\sqrt{adbc}=2\) (4)
Cộng theo vế của (1),(2),(3),(4) ta có điều phải chứng minh
Dấu "=" khi \(\begin{cases}a=b=c=d\\abcd=1\end{cases}\)\(\Rightarrow a=b=c=d=\frac{1}{4}\)
1) \(x+\frac{1}{x}\ge2\left(1\right)\)
<=> \(\frac{x^2+1}{x}\ge2\)
<=> x2 + 1 \(\ge\)2x
<=> x2 + 1 - 2x \(\ge\) 0
<=> (x - 1)2 \(\ge\)0 (2)
Bđt (2) đúng vậy bđt (1) được chứng minh
b) Áp dụng bđt AM-GM cho 10 số dương ta có:
a2+b2+c2+d2+ab+ac+ad+bc+bd+cd
\(\ge10\sqrt[10]{a^2.b^2.c^2.d^2.ab.ac.ad.bc.bd.cd}=10\sqrt[10]{\left(a.b.c.d\right)^5}\)
\(=10\sqrt[10]{1}=10\left(đpcm\right)\)
\(ab+cd=0\)
\(\Leftrightarrow ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)=0\)
\(\Leftrightarrow abc^2+abd^2+cda^2+cdb^2=0\)
\(\Leftrightarrow ac\left(bc+ad\right)+bd\left(ad+bc\right)=0\)
\(\Leftrightarrow\left(bc+ad\right)\left(ac+bd\right)=0\left(true,bcause:gt\right)\)
(ac+bd)(bc+ad)=0
<=> abc2+a2cd+b2cd+abd2=0
<=> ab(c2+d2)+cd(a2+b2)=0
<=>ab+cd=0
2/ Ta có \(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)(luôn đúng)
Vậy bđt ban đầu được chứng minh.
ac+bd=0 => (ac+bd)(bc+ad)=0
=> abc2 +a2cd+ b2cd+ abd2=0
=> cd(a2+b2)+ ab(c2+d2)=0
mà a2+b2=1; c2+d2=1 =>cd+ab=0
(đúng thì tk nha)
Ta có: \(\left(ac+bd\right)\left(bc+da\right)=0\)
\(\Leftrightarrow c^2ab+a^2cd+b^2cd+d^2ab=0\)
\(\Leftrightarrow ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)=0\)
Mà \(c^2+d^2=1\)\(a^2+b^2=1\)
\(\Rightarrow ab+cd=0\)
Bài này dễ mà?
Theo đề ra:
\(ac+bd=0\Rightarrow\left(ac+bd\right)\left(ad+cb\right)=0\Rightarrow a^2cd+ac^2b+abd^2+b^2cd=0\)
\(\Rightarrow\left(a^2cd+b^2cd\right)+\left(ac^2b+abd^2\right)=0\Rightarrow cd\left(a^2+b^2\right)+ab\left(c^2+d^2\right)=cd+ab=0\)
uk