K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

Từ đề bài ta suy ra: \(\left(a-b\right)\left(a+b\right)=97\).

Ta có 97 là số nguyên tố và 0 < a - b < a + b nên a - b = 1; a + b = 97.

Do đó \(a=\dfrac{1+97}{2}=49;b=\dfrac{97-1}{2}=48\)

\(\Rightarrow a^2+b^2=49^2+48^2=4705\).

16 tháng 11 2016

Đặt biểu thức trên là A

-Trường hợp a chia hết b:

Ta có: A nguyên nên a^2 + b^2 chia hết ab

Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a

=> a=b

=> (a^2+b^2)/ab= 2a^2/a^2=2

-Trường hợp a không chia hết b, hoặc b không chia hết a:

A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2

Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab

Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab

Mà a-b chia hết ab => a−b≥ab

=> Phương trình vô nghiệm ở trường hợp này.

Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*

31 tháng 7 2018

tự hỏi tự trả lời

19 tháng 11 2016

Đặt biểu thức trên là A

-Trường hợp a chia hết b:

Ta có: A nguyên nên a^2 + b^2 chia hết ab

Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a

=> a=b

=> (a^2+b^2)/ab= 2a^2/a^2=2

-Trường hợp a không chia hết b, hoặc b không chia hết a:

A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2

Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab

Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab

Mà a-b chia hết ab => a−b≥ab

=> Phương trình vô nghiệm ở trường hợp này.

Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*

14 tháng 11 2016

Đặt biểu thức trên là A

-Trường hợp a chia hết b:

Ta có: A nguyên nên a^2 + b^2 chia hết ab

Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a

=> a=b

=> (a^2+b^2)/ab= 2a^2/a^2=2

-Trường hợp a không chia hết b, hoặc b không chia hết a:

A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2

Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab

Mà a,b nguyên nên: \(a< b\left(a+1\right)\) <=> \(a-b< ab\)

Mà a-b chia hết ab => \(a-b\ge ab\)

=> Phương trình vô nghiệm ở trường hợp này.

Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*

10 tháng 12 2016

Kết quả là 4705

10 tháng 12 2016

ôi , vô cùng tks bạn nhá alibaba lúc nào đang bí thì có cậu giúp , cảm ơn nhiều :D 

10 tháng 11 2016

Câu 1:

Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2+a-3b^2-b=0\Rightarrow3\left(a^2-b^2\right)+\left(a-b\right)=a^2\)

\(\Rightarrow3\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\Rightarrow\left(a-b\right)\left(3a+3b+1\right)=a^2\)

Gọi \(ƯCLN\)\(\left(a-b;3a+3b+1\right)=d\)

=> \(a-b⋮d;3a+3b+1⋮d\Rightarrow\left(a-b\right)\left(3a+3b+1\right)⋮d^2\Rightarrow a^2⋮d^2\Rightarrow a⋮d\Rightarrow6a⋮d\left(1\right)\)

Mà ta lại có: \(3\left(a-b\right)+\left(3a+3b+1\right)⋮d\Rightarrow6a +1⋮d\left(2\right)\)

Từ 1 và 2 => \(d=1\) => \(a-b\)\(3a+3b+1\) là 2 số nguyên tố cùng nhau.

Và đồng thời \(3a+3b+1>a-b\Rightarrow\begin{cases}3a+3b+1=a^2\\a-b=1^2\end{cases}\)

Vậy \(3a+3b+1\)\(a-b\) đều là các số chính phương.

Câu 2:

Ta có: \(6x+5y+18=2xy\Rightarrow5y+18=2xy-6x=2x\left(y-3\right)\Rightarrow2x=\frac{5y+18}{y-3}=\frac{5\left(y-3\right)+33}{y-3}=5+\frac{33}{y-3}\)

Do \(x;y\in Z\Rightarrow\)\(\frac{33}{y-3}\in Z\Rightarrow33⋮y-3\Rightarrow y-3\inƯ\left(33\right)=\left\{\pm1;\pm3;\pm11;\pm33\right\}\)

Ta có bảng sau:

y-31-13-311-1133-33
2x-533-3311-113-31-1
2x38-2816-68264
x19-148-34132
y426014-936-30

 

Vậy \(\left(x;y\right)=\left(19;4\right);\left(-14;2\right);\left(8;6\right);\left(-3;0\right);\left(4;14\right);\left(1;-9\right);\left(3;36\right);\left(2;-30\right)\)

 

 

 

10 tháng 11 2016

Bạn nên ấn cái này để dễ nhìn hơn

Đại số lớp 8

22 tháng 12 2017

o0o Nguyễn o0o CTV  làm kết luận thế là chưa đúng đâu nhé.

8 tháng 1 2017

Ta có: \(a^2-b^2=97\) => (a - b)(a + b) = 97 = 1.97 = 97.1 (vì 97 là số nguyên tố)

Vì a và b là hai số nguyên dương, mà a - b < a + b   =>  a-b = 1 và a+b = 97

=>  a = 49 , b = 48

8 tháng 1 2017

Ta có 97 là số nguyên tố

a2-b2=97

<=>(a+b).(a-b)=97

\(\orbr{\begin{cases}a-b=1\\a+b=97\end{cases}}< =>\orbr{\begin{cases}a=49\\b=48\end{cases}}\)

Vay a=49 va b=48

tk cko mk nha.chuc ban hoc tot

10 tháng 12 2016

Ta có: \(a^2-b^2=97\Leftrightarrow\left(a-b\right)\left(a+b\right)=97\)

Vì a và b là 2 số nguyên dương và a-b<a+b\(\Rightarrow a-b=1\)\(a+b=97\) (Vì 97 là số nguyên tố)

Suy ra a=49 và b=48

29 tháng 12 2016

\(\orbr{\begin{cases}a=49&b=48&\end{cases}\Rightarrow49^2+48^2=2401+2304=4705}\)