Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: S=22+42+62+...+202
=(2.1)2+(2.2)2+(2.3)2+...+(2.10)2
=22.12+22.22+22.32+...+22.102
=22.(1+22+32+...+102)
Mà 12+22+32+...+102=385 nên:
S=22.385
=4.385
=1540
Vậy S=1540
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
Câu 1.
a). 2A = 8 + 2 3 + 2 4 + . . . + 2 21.
=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20). = 2 21.
b). (x + 1) + ( x + 2 ) + . . . . . . . . + (x + 100) = 5750
=> x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100 = 5750
=> ( 1 + 2 + 3 + . . . + 100) + ( x + x + x . . . . . . . + x ) = 5750
=> 101 . 50 + 100 x = 5750
100 x + 5050 = 5750
100 x = 5750 – 5050
100 x = 700
x = 7
101 . 50 + 100 x = 5750
100 x + 5050 = 5750
100 x = 5750 – 5050
100 x = 700
x = 7
Câu 1. a). 2A = 8 + 2 3 + 2 4 + . . . + 2 21.
=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20). = 2 21.
b). (x + 1) + ( x + 2 ) + . . . . . . . . + (x + 100) = 5750
=> x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100 = 5750
=> ( 1 + 2 + 3 + . . . + 100) + ( x + x + x . . . . . . . + x ) = 5750
=> 101 . 50 + 100 x = 5750
100 x + 5050 = 5750
100 x = 5750 – 5050
100 x = 700
x = 7
Đặt A= \(\frac{3}{2^2}\) . \(\frac{8}{3^2}\) . \(\frac{15}{4^2}\). ... . \(\frac{99}{10^{10}}\)
= \(\frac{1.3}{2.2}\) . \(\frac{2.4}{3.3}\) . \(\frac{3.5}{4.4}\) . ... . \(\frac{9.11}{10.10}\)
= \(\frac{1.2.3.4.....9}{2.3.4.5.6.....9.10}\) . \(\frac{3.4.....9.10.11}{2.3.4.5.6.....9.10}\)
= \(\frac{1}{10}\) . \(\frac{11}{2}\) = \(\frac{11}{20}\)
\(S=\left(1.2\right)^2+\left(2.2\right)^2+\left(2\cdot3\right)^2+...+\left(2\cdot10\right)^2\)
\(=1^2\cdot2^2+2^2\cdot2^2+2^2\cdot3^2+...+2^2+10^2\)
\(=2^2\cdot\left(1^2+2^2+3^2+...+10^2\right)\)
\(=2^2\cdot385=1540\)