Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=x^3+x^2.y-2x^2-xy-y^2+3y+x-1
=> M=x^2(x+y-2)-(xy+y^2-2y)+(y+x-1) = 0- y(x+y-2)+1=1
N=x^3-2x^2-xy^2+2xy+2y+2x-2
=> N= 2(x+y-1)+x(x^2-y^2)-2x(x-y)=2+x(x+y)(x-y)-2x(x-y)=2+(x^2+xy-2x)(x-y)=2+x(x+y-2)(x-y)=2+0=2(vì x+y-2=0)
M=(x^3+x^2y-2x^2)-(xy+y^2-2y)+(x+y-2)+1
=x^2(x+y-2)-y(x+y-2)+(x+y-2)+1
=x^2.0-y.0+0+1=1
N=x^3-2x^2-xy^2+2xy+2y+2x-2+x^2y-x^2y+2-2
=(x^3+x^2y-2x^2)-(x^2y+xy^2-2xy)+(2x+2y-4)+2
=x^2(x+y-2)-xy(x+y-2)+2(x+y-2)+2
=x^2.0-xy.0+2.0+2=2
\(2x=3y=5z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
|x - 2y| = 5 => x - 2y = 5 hoặc x - 2y = -5
Áp dụng tính chất DTSBN ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=\frac{5}{-\frac{1}{6}}=-30\)
x/1/2 = -30 => x = -15
y/1/3 = -30 => y = -10
z/1/5 = -30 => z = -6
TH2: Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=-\frac{5}{-\frac{1}{6}}=30\)
x/1/2 = 30 => x = 15
y/1/3 = 30 => y = 10
z/1/5 = 30 => z= 6
a,
2x=3y=5z
=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)=>\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)
mà l x-2y l =5
=>x-2y=5 hoặc x-2y=-5
nếu x-2y=5
=>x/15=2y/20=x-2y/15-20=5/-5=-1
=>x=-15
=>y=-10
=>z=-6
nếu x-2y=-5
=>x/15=2y/20=x-2y=-5/-5=1
=>x=15
=>y=10
=>z=6
còn b/c bạn đăng từng bài 1 nhé làm thế này lâu lắm ! đăng câu khác mik làm tiếp cho !
a)\({-1\over 2}x^2×y^2 - x^2×y^2 +{2\over 3} x^2×y^2 \)
=\(({ -1\over 2}-1+{ 2\over 3})x^2×y^2\)
=\({-5 \over 6}x^2×y^2\)
b)\({1 \over 2}a^3×b^2 +{4 \over 3}3ab^2 × {1 \over 2}a^2\)
=\({1 \over 2}a^3×b^2 +({4 \over 3}× {1 \over 2})3b^2 (a×a^2) \)
=\({1 \over 2}a^3×b^2 +{2 \over 3}3a^3b^2\)
=\(({1 \over 2} +{2 \over 3}3)a^3b^2\)
=\({5 \over 2}a^3b^2\)
c)
\(M=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
\(M=\left(x^3-y^3\right)+\left(x^2y-xy^2\right)+\left(x^2-y^2\right)+\left(2x+2y+2\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2+xy+x+y\right)+2.0+1\)
\(M=\left(x-y\right)\left[\left(x+y\right)^2+\left(x+y\right)\right]+1\)
\(M=\left(x-y\right)\left(x+y\right)\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x+y\right).0+1\)
\(M=1\)
Ở bài này mk áp dụng hằng đẳng thức (a3-b3)=(a-b)(a2+ab+b2) ,(a2-b2)=(a-b)(a+b);(a2+2ab+b2)=(a+b)2
Ta có : \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\) => \(\frac{3x}{8}=\frac{3y}{64}=\frac{z}{72}\)
=> \(\frac{x}{\frac{8}{3}}=\frac{y}{\frac{64}{3}}=\frac{z}{72}\)
=> \(\frac{x^2}{\frac{64}{9}}=\frac{y^2}{\frac{4096}{9}}=\frac{z^2}{5184}\)
=> \(\frac{2x^2}{\frac{128}{9}}=\frac{2y^2}{\frac{8192}{9}}=\frac{z^2}{5184}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x^2}{\frac{128}{9}}=\frac{2y^2}{\frac{8192}{9}}=\frac{z^2}{5184}=\frac{2x^2+2y^2-z^2}{\frac{128}{9}+\frac{8192}{9}-5184}=\frac{1}{-\frac{38336}{9}}=-\frac{9}{38336}\)
=> \(\hept{\begin{cases}\frac{2x^2}{\frac{128}{9}}=-\frac{9}{38336}\\\frac{2y^2}{\frac{8192}{9}}=-\frac{9}{38336}\\\frac{z^2}{5184}=-\frac{9}{38336}\end{cases}\Leftrightarrow}x,y,z\in\varnothing\)
Vậy không có số nào thỏa mãn
ĐK: x # 0
Ta có:
(1) 1+2y/18 = 1+4y/24
=> 24 + 48y = 18 + 72y
<=> y=1/4
(2) 1+4y/24=1+6y/6x
Thay y=1/4 vào (2) ta tìm đc x=5 (thỏa)
bạn tham khảo nha
1 + 2y/18=1 + 6y/6x=1 + 2y + 1 + 6y/18 + 6x=2 + 8y/18 + 6x=2.(1 + 4y)/2.(9 + 3x)=1 + 4y/9 + 3x
Suy ra:1 + 4y/9 + 3x=1 + 4y/24=>9 + 3x=24
3x=15
x=5
x-2xy+y=0 suy ra 2x-4xy+2y=0 suy ra 2x-4xy+2y-1=-1
suy ra (2x-4xy)-(1-2y)=-1 suy ra 2x(1-2y)-(1-2y)=-1
suy ra (2x-1)(1-2y) hay (1-2y)(2x-1)