K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{x^4}{a}+\frac{y^4}{b}\right)(a+b)\geq (x^2+y^2)^2=1\)

\(\Leftrightarrow \frac{x^4}{a}+\frac{y^4}{b}\geq \frac{1}{a+b}\)

Dấu bằng xảy ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\). Do đó \(\frac{x^2}{a}=\frac{y^2}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow \frac{x^{2006}}{a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{(a+b)^{1003}}\)

\(\Rightarrow \frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{y^{1003}}=\frac{2}{(a+b)^{1003}}\)

Do đó ta có đpcm.

30 tháng 11 2017

Bài này phải quy đồng rồi áp dụng chớ chớ lỡ a+b=0 thì sao chị :3

8 tháng 2 2018

 \(\text{Đặt }x^2=m\ge0;y^2=n\ge0\Rightarrow m+n=1\)

\(\text{Ta có: }\frac{m^2}{a}+\frac{n^2}{b}=\frac{\left(m+n\right)^2}{a+b}\Leftrightarrow\left(a+b\right)\left(\frac{m^2}{a}+\frac{n^2}{b}\right)=\left(m+n\right)^2\left(\text{BĐT Bunhiacopki}\right)\)\(\Leftrightarrow m^2+n^2+\frac{b}{a}m^2+\frac{a}{b}n^2=m^2+n^2+2mn\)

\(\Leftrightarrow\frac{b}{a}m^2+\frac{a}{b}n^2-2mn=0\left(1\right)\)

\(\text{+Nếu }\frac{a}{b}< 0\text{ thì (1)}\Leftrightarrow-\left(\sqrt{-\frac{b}{a}m}\right)^2-2mn-\left(\sqrt{-\frac{a}{b}n}\right)^2=0\Leftrightarrow\left(\sqrt{-\frac{b}{a}m}+\sqrt{-\frac{a}{b}n}\right)^2=0\)

\(\Leftrightarrow\sqrt{-\frac{b}{a}m}+\sqrt{-\frac{a}{b}n}=0\Leftrightarrow m=n=0\left(\text{loại}\right)\)

\(\text{Xét }\frac{a}{b}>0;\left(1\right)\Leftrightarrow\left(\sqrt{\frac{b}{a}m}\right)^2-2mn+\left(\sqrt{\frac{a}{b}n}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{-\frac{b}{a}m}-\sqrt{-\frac{a}{b}n}\right)^2=0\Leftrightarrow\sqrt{\frac{b}{a}m}=\sqrt{\frac{a}{b}n}\)

\(\Leftrightarrow bm=an\Leftrightarrow bx^2=ay^2\left(a,b>0\right)\)

\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\left(\frac{x^2}{a}\right)^{1003}+\left(\frac{y^2}{b}\right)^{1003}=\frac{1}{\left(a+b\right)^{1003}}+\frac{1}{\left(a+b\right)^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\left(đpcm\right)\)

12 tháng 8 2017

Mở đầu về phương trình

Mở đầu về phương trình

12 tháng 8 2017

2.

\(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+10}{2001}+\dfrac{x+11}{2000}\\ \Leftrightarrow\dfrac{x+5}{2006}+1+\dfrac{x+4}{2007}+1+\dfrac{x+3}{2008}+1< \dfrac{x+9}{2002}+1+\dfrac{x+10}{2001}+1+\dfrac{x+11}{2000}+1\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}< \dfrac{x+2011}{2002}+\dfrac{x+2011}{2001}+\dfrac{x+2011}{2000}\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}-\dfrac{x+2011}{2002}-\dfrac{x+2011}{2001}-\dfrac{x+2011}{2000}< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2002}-\dfrac{1}{2001}-\dfrac{1}{2000}\right)< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)

\(\left\{{}\begin{matrix}\dfrac{1}{2006}< \dfrac{1}{2002}\\\dfrac{1}{2007}< \dfrac{1}{2001}\\\dfrac{1}{2008}< \dfrac{1}{2000}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2006}-\dfrac{1}{2002}< 0\\\dfrac{1}{2007}-\dfrac{1}{2001}< 0\\\dfrac{1}{2008}-\dfrac{1}{2000}< 0\end{matrix}\right.\Rightarrow\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)

\(\Rightarrow x>0\)

Vậy \(x>0\)

9 tháng 4 2017

đề phải ntn chứ \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\)

9 tháng 4 2017

-mình chưps sai đề

-bạn giúp mình được không

22 tháng 8 2017

1)

\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)

22 tháng 8 2017

dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)

\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)

\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)

1 tháng 1 2019

1. Sửa đề

\(x^4-2x^2y+x^2+y^2-2y+1\)

\(=x^2\left(x^2-2y+1\right)+\left(x^2-2y+1\right)\)

\(=\left(x^2-2y+1\right)\left(x^2+1\right)\)

2.

a. \(A=\dfrac{x^5}{120}+\dfrac{x^4}{12}+\dfrac{7x^3}{24}+\dfrac{5x^2}{12}+\dfrac{x}{5}\)

\(=\dfrac{x^5+10x^4+35x^3+50x^2+24x}{120}\)

Ta có: \(x^5+10x^4+35x^3+50x^2+24x\)

\(=x\left(x^4+10x^3+35x^2+50x+24\right)\)

\(=x\left(x^4+x^3+9x^3+9x^2+26x^2+26x+24x+24\right)\)

\(=x\left[x^3\left(x+1\right)+9x^2\left(x+1\right)+26x\left(x+1\right)+24\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(x^3+9x^2+26x+24\right)\)

\(=x\left(x+1\right)\left(x^3+2x^2+7x^2+14x+12x+24\right)\)

\(=x\left(x+1\right)\left[x^2\left(x+2\right)+7x\left(x+2\right)+12\left(x+2\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x^2+7x+12\right)\)

\(=x\left(x+1\right)\left(x+2\right)\left(x^2+3x+4x+12\right)\)

\(=x\left(x+1\right)\left(x+2\right)\left[x\left(x+3\right)+4\left(x+3\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)⋮\left(1\cdot2\cdot3\cdot4\cdot5\right)=120\)

\(\Rightarrow\dfrac{x^5+10x^4+35x^3+50x^2+24x}{120}\in Z\)

1 tháng 1 2019

b.

\(B=\dfrac{x^{2004}+x^{2000}+x^{1996}+...+x^4+1}{x^{2006}+x^{2004}+x^{2002}+...+x^2+1}\)

\(=\dfrac{x^{2004}+x^{2000}+x^{1996}+...+x^4+1}{\left(x^2+1\right)\left(x^{2004}+x^{2000}+...+1\right)}=\dfrac{1}{x^2+1}\)

30 tháng 1 2017

1/ Ta có: \(\frac{x^4}{1a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow1bx^4\left(a+b\right)+ay^4\left(a+b\right)=ab\left(x^4+2x^2y^2+y^4\right)\)

 \(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)

\(\Rightarrow\frac{x^2}{1a}=\frac{y^2}{b}=\frac{\left(x^2+y^2\right)}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2006}}{1a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{\left(a+b\right)^{1003}}\)

 \(\Rightarrow\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\)