Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: a) \(9^{x.2-8}=0\Rightarrow x\in\phi\)
b) \(8x-7-6.2=\left|-8\right|.\left(-5\right)-50\\ \Leftrightarrow8x=\left|-8\right|.\left(-5\right)-50+7+6.2\\ \Leftrightarrow8x=-40-50+7+12\\ 8x=-71\\ \Leftrightarrow x=\frac{-71}{8}\)
Bài 2: tính
a) Ta có: S=1-2-3+4+5-6-7+8+...+2001-2002-2003+2004+2005
=(1-2-3+4)+(5-6-7+8)+...(2001-2002-2003+2004)+2005
=0+2005=2005
b) Ta có: 5x+13 là bội của 2x+1
\(\Leftrightarrow5x+13⋮2x+1\)
\(\Leftrightarrow13⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(13\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2;12;-14\right\}\)
\(\Leftrightarrow x\in\left\{0;-1;6;-7\right\}\)
Vì \(x\in Z^+\)
nên x=6
Vậy: x=6
Bài 11 :
a) -10 < x < 8
x = {-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7}
Tổng của các số nguyên x là :
= (-9) + (-8) + (-7) + ... + 5 + 6 + 7
= (-9) + (-8) + [(-7) + 7] + [(-6) + 6] ... + [(-1) + 1] + 0
= (-9) + (-8) + 0 + 0 + ... + 0 + 0
= -17
b) -4 ≤ x < 4
x = {-4; -3; -2; -1; 0; 1; 2; 3}
Tổng của các số nguyên x là :
= (-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3
= (-4) + [(-3) + 3] + [(-2) + 2] + [(-1) + 1] + 0
= (-4) + 0 + 0 + 0 + 0
= -4
c) | x | < 6
-6 < x < 6
x = {-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5}
Tổng của các số nguyên x là :
= (-5) + (-4) + (-3) + ... + 3 + 4 + 5
= [(-5) + 5] + [(-4) + 4] + [(-3) + 3] + ... + 0
= 0 + 0 + 0 + ... + 0
= 0
Bài 12 :
a) -9 ≤ x < 10
x = {-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
Tổng của các số nguyên x là :
= (-9) + (-8) + (-7) + ... + 7 + 8 + 9
= [(-9) + 9] + [(-8) + 8] + [(-7) + 7] + ... + [(-2) + 2] + [(-1) + 1] + 0
= 0 + 0 + 0 + ... + 0 + 0 + 0
= 0
b) -6 ≤ x < 5
x = {-6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4}
Tổng của các số nguyên x là :
= (-6) + (-5) + (-4) + (-3) + ... + 3 + 4
= (-6) + (-5) + [(-4) + 4] + [(-3) + 3] + ... + 0
= (-6) + (-5) + 0 + 0 + ... + 0
= -11
c) | x | < 5
-5 < x < 5
x = {-4; -3; -2; -1; 0; 1; 2; 3; 4;}
Tổng của các số nguyên x là :
= (-4) + (-3) + ... + 3 + 4
= [(-4) + 4] + [(-3) + 3] + ... + 0
= 0 + 0 + ... + 0
= 0
Bài 13 :
a) (a - b + c) - (a + c) = -b
a - b + c - a - c = -b
(a - a) + (c - c) - b = -b
0 + 0 - b = -b
-b = -b
b) (a + b) - (b - a) + c = 2a + c
a + b - b + a + c = 2a + c
a + a + (b - b) + c = 2a + c
2a + 0 + c = 2a + c
2a + c = 2a + c
c) -(a + b - c) + ( a - b - c) = -2b
-a - b + c + a - b - c = -2b
(-a + a) - b - b - (c - c) = -2b
0 - b - b - 0 = -2b
-b - b = -2b
-2b = -2b
d) a(b + c) - a(b + d) = a(c - d)
(a.b + a.c) - (a.b + a.d) = a(c - d)
a.b + a.c - a.b - a.d = a(c - d)
(a.b - a.b) + a.c - a.d = a(c - d)
0 + a.c - a.d = a(c - d)
0 + a(c - d) = a(c - d)
a(c - d) = a(c - d)
Bài 14 :
a) M = a(a + 2) - a(a - 5) - 7
M = (a.a + a.2) - (a.a - a.5) - 7
M = a.a + a.2 - a.a + a.5 -7
M = (a.a - a.a) + a.2 + a.5 - 7
M = 0 + a.2 + a.5 - 7
M = a.2 + a.5 - 7
M = a.(2 + 5) - 7
M = a.7 - 7
Vì a.7 ⋮ 7 và 7 ⋮ 7
Nên M ⋮ 7
b) N = (a - 2) . (a + 3) - (a - 3) . (a + 2)
TH1 : Nếu a là số chẵn thì :
⇒ \(\left[{}\begin{matrix}\text{(a - 2) : chẵn }\\\text{(a + 3) : lẻ }\\\text{ (a - 3) : lẻ }\\\text{(a + 2) : chẵn}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}\text{(a - 2) . (a + 3) = chẵn . lẻ = chẵn}\\\text{(a - 3) . (a + 2) = lẻ . chẵn = chẵn}\end{matrix}\right.\)
⇒ (a - 2) . (a + 3) - (a - 3) . (a + 2)
= chẵn - chẵn
= chẵn
TH2 : Nếu a là số lẻ thì :
⇒ \(\left[{}\begin{matrix}\text{(a - 2) : lẻ }\\\text{(a + 3) : chẵn }\\\text{ (a - 3) : chẵn }\\\text{(a + 2) : lẻ}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}\text{(a - 2) . (a + 3) = lẻ . chẵn = chẵn}\\\text{(a - 3) . (a + 2) = chẵn . lẻ = chẵn}\end{matrix}\right.\)
⇒ (a - 2) . (a + 3) - (a - 3) . (a + 2)
= chẵn - chẵn
= chẵn
Bài 15 :
Bài này để mai mk làm nha bn đoàn thanh huyền, vì giờ mk khá mệt vì sáng làm nhiều bài quá, mk ko chép mấy cái đề vì nó vướng víu với làm mk khó chiụ, nên bn chịu khó xem lại đề rồi xem bài mk nha bn đoàn thanh huyền
Bài 1:
A = 32 + 33 + 34 + ... + 32018
3A = 33 + 34 + 35 + ... + 32019
3A - A = (33 + 34 + 35 + ... + 32019) - (32 + 33 + 34 + ... + 32018)
2A = 32019 - 9
A = (32019 - 9) : 2
= (32016.33 - 9) : 2
= [ (34)504.27 - 9] : 2
= [ (...1)504.27 - 9] : 2
= [ (...1).27 - 9] : 2
= [ (...7) - 9] : 2
= (....8) : 2
= ...4
Vậy c/s tận cùng của A là 4
Bài 2:
Ta có:
1019 + 1018 + 1017
= 1016.103 + 1016.102 + 1016.10
= 1016.(103 + 102 + 10)
= 1016.1110
= 1016.2.555
Vì 555 chia hết cho 555 nên 1016.2.555 chia hết cho 555
Vậy 1019 + 1018 + 1017 chia hết cho 555 (đpcm)
Bài 3:
x + 6 chia hết cho x + 2
=> x + 2 + 4 chia hết cho x + 2
=> 4 chia hết cho x + 2
=> x + 2 thuộc Ư(4) = {\(\pm1;\pm2;\pm4\)}
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
Vậy x = {-1;-3;0;-4;2;-6}
Bài 4:
Giả sử x + 4y chia hết cho 7 (1)
Vì 3x + 5y chia hết cho 7 nên 2(3x + 5y) chia hết cho 7
=> 6x + 10y chia hết cho 7 (2)
Từ (1) và (2) => (x + 4y) + (6x + 10y) chia hết cho 7
=> x + 4y + 6x + 10y chia hết cho 7
=> (x + 6x) + (4y + 10y) chia hết cho 7
=> 7x + 14y chia hết cho 7
=> 7(x + 2y) chia hết cho 7
=> Giả sử đúng
Vậy x + 4y chia hết cho 7 (đpcm)
Bài 5:
1, Ta có: \(-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow-1-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow A\le0\)
Dấu " = " xảy ra <=> (x + 2)2018 = 0 <=> x = -2
Vậy GTNN của A là -1 khi x = -2
2, Ta có: \(x^2\ge0\)
\(\left|2y-18\right|\ge0\)
\(\Rightarrow x^2+\left|2y-18\right|\ge0\)
\(\Rightarrow-9+x^2+\left|2y-18\right|\ge-9\)
Dấu " = " xảy ra <=> \(\left\{\begin{matrix}x^2=0\\\left|2y-18\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Vậy GTLN của B là -9 khi \(\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Bài 6:
1, xy + 2x - y - 2 = 5
<=> x(y + 2) - (y + 2) = 5
<=> (x - 1)(y + 2) = 5
=> x - 1 và y + 2 thuộc Ư(5) = {\(\pm1;\pm5\)}
Ta có bảng:
x - 1 | 1 | -1 | 5 | -5 |
y + 2 | 5 | -5 | 1 | -1 |
x | 2 | 0 | 6 | -4 |
y | 3 | -7 | -1 | -3 |
Vậy các cặp (x;y) là (2;3) ; (0;-7) ; (6;-1) ; (-4;-3)
2, x + y = 2xy
<=> 2xy - x - y = 0
<=> 2(2xy - x - y) = 2.0
<=> 4xy - 2x - 2y = 0
<=> (4xy - 2x) - 2y - 1 = 0 - 1
<=> 2x(2y - 1) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = -1
=> 2x - 1 và 1 - 2y thuộc Ư(-1) = {\(\pm1\)}
Ta có bảng:
2x - 1 | 1 | -1 |
1 - 2y | -1 | 1 |
x | 1 | 0 |
y | 1 | 0 |
Các CVT giúp e vs ạ : @Phạm Thị Diệu Huyền , @Vũ Minh Tuấn , @Nguyễn Thành Trương , @HISINOMA KINIMADO , @Trần Thanh Phương , @buithianhtho , @Nguyễn Huyền Trâm , @Vy Lan Lê , @Trần Thị Hà My , @Vương Thị Thanh Hoa , @Nguyễn Văn Đạt , @Vũ Như Quỳnh , @phạm hoàng lê nguyên , @nguyen thi vang , @Nguyễn Thị Diễm Quỳnh , @Hùng Nguyễn , @Thảo Phương , @Hồ Bảo Trâm , @Nguyễn Nhật Minh , ... và 1 số CVT khác giúp mk nhé .
\(1a.8\left(x-7\right)-6\left(x-2\right)=\left|-8\right|.\left(-5\right)\\ \Leftrightarrow8x-56-6x+12=8.\left(-5\right)\\ \Leftrightarrow8x-6x-56+12=40\\\Leftrightarrow 2x=56-12-40\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(b.-7\left(x-5\right)+2\left(7x-14\right)=28\\ \Leftrightarrow-21x+35+14x-28=28\\ \Leftrightarrow-21x+14x=-35+28+28\\ \Leftrightarrow-7x=21\\ \Leftrightarrow x=-3\)
\(c.2x+12=3\left(x-7\right)\\ \Leftrightarrow2x+12=3x-21\\\Leftrightarrow 2x-3x=-12-21\\ \Leftrightarrow-x=-33\\ \Leftrightarrow x=33\)