Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thu gọn và sắp xếp:
M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1
= x4 + 2x2 +1
b)M(1) = 14 + 2.12 + 1 = 4
M(–1) = (–1)4 + 2(–1)2 + 1 = 4
Ta có M(x)=\(x^4+2x^2+1\)
Vì \(x^4\)và \(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x
Nên \(x^4+2x^2+1>0\)
Tức là M(x)\(\ne0\) với mọi x
Vậy đa thức trên không có nghiệm.
a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến
M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1
=x4+2x2+1=x4+2x2+1
b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4
M(−1)=(−1)4+2.(−1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4
c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1
Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.
a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)
\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)
\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)
\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)
b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)
\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm
Lời giải:
Bạn hiểu rằng đa thức $f(x)$ có nghiệm $x=a$ khi mà $f(a)=0$
a) Theo đề bài:
\(f(x)=3x^3+4x^2+2x+1\)
\(\Rightarrow f(-1)=3(-1)^3+4(-1)^2+2(-1)+1=0\)
Do đó $x=-1$ là một nghiệm của $f(x)$ (đpcm)
b)
\(f(x)=ax^3+bx^2+cx+d\) nhận $x=-1$ là nghiệm khi và chỉ khi :
\(f(-1)=a(-1)^3+b(-1)^2+c(-1)+d=0\)
\(\Leftrightarrow -a+b-c+d=0\)
\(\Leftrightarrow a+c=b+d\) (đpcm)
a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
__________________________________
P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
_________________________________________
P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
c)Thay x=0 vào đa thức P(x), ta có:
P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)
=0+0-0-0-0
=0
Vậy x=0 là nghiệm của đa thức P(x).
Thay x=0 vào đa thức Q(x), ta có:
Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)
=0+0-0+0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=\(\dfrac{-1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x).
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x5−3x2+7x4−9x3+x2−14xP(x)=x5−3x2+7x4−9x3+x2−14x
=x5+7x4−9x3−2x2−14x=x5+7x4−9x3−2x2−14x
Q(x)=5x4−x5+x2−2x3+3x2−14Q(x)=5x4−x5+x2−2x3+3x2−14
=−x5+5x4−2x3+4x2−14=−x5+5x4−2x3+4x2−14
b) P(x) + Q(x) = (x5+7x4−9x3−2x2−1
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
+) P (y) = 3y+ 6 có nghiệm nếu : 3y+ 6= 0
=> 3y= 0- 6
=> 3y= -6
=> y= -2
Vậy đa thức P(y) có nghiệm: y= -2
+ ) Q( y)= y4 + 2 nếu có nghiệm thì: y4 +2= 0
=> y4= -2
=> Q( y) = y4 +2 k có nghiệm.
a)M(x)=x2+5x+4=0
x2+x+4x+4=0
(x2+x)+(4x+4)=0
x(x+1)+4(x+1)=0
(x+1)(x+4)=0
=>x+1=0 hoặc x+4=0
x=-1 hoặc x =-4
Vậy nghiệm của đa thức M(x) là x=-1;-4
b)ta có M(x)+4=x2+5x+4+4=x2+5x+8
=x2+\(\frac{5}{2}.x+\frac{5}{2}.x+\frac{25}{4}+\frac{7}{4}\)
=(x2+\(\frac{5}{2}.x\))+(\(\frac{5}{2}.x+\frac{25}{4}\))+\(\frac{7}{4}\)
=x(x+\(\frac{5}{2}\))+\(\frac{5}{2}\)(x+\(\frac{5}{2}\))+\(\frac{7}{4}\)
=(x+\(\frac{5}{2}\))(x+\(\frac{5}{2}\))+\(\frac{7}{4}\)
=(x+\(\frac{5}{2}\))2+\(\frac{7}{4}\)
=>M(x)+4=0 thì (x+\(\frac{5}{2}\))2+\(\frac{7}{4}\)=0
(x+\(\frac{5}{2}\))2=\(\frac{-7}{4}\)(vô lí )
Vậy M(x)+4 không có nghiệm
a) M (x) = 0 <=> x2 + 5x + 4 = 0
<=> (x2 + 4x) + (x + 4) = 0
<=> x.(x + 4) + (x + 4) = 0
<=> (x+ 4).(x + 1) = 0
<=> x + 4 = 0 hoặc x + 1 = 0
<=> x = - 4 hoặc x = -1
Vậy nghiệm của M (x) là -4; -1
b) M(x) + 4 = x2 + 5x + 4 + 4 = x2 + 5x + 8
= x2 + \(\frac{5}{2}\).x + \(\frac{5}{2}\).x + 8= (x2 + \(\frac{5}{2}\).x) +( \(\frac{5}{2}\).x + \(\frac{25}{4}\)) - \(\frac{25}{4}\) + 8
= x.(x + \(\frac{5}{2}\) ) + \(\frac{5}{2}\).(x + \(\frac{5}{2}\)) + \(\frac{7}{4}\) = (x + \(\frac{5}{2}\) ).(x + \(\frac{5}{2}\) ) + \(\frac{7}{4}\) = (x + \(\frac{5}{2}\) )2 + \(\frac{7}{4}\) \(\ge\) 0 + \(\frac{7}{4}\) > 0 với mọi x
Vậy M(x) + 4 không có nghiệm
Lời giải:
Ta thấy:
$x^4\geq 0, \forall x\in\mathbb{R}$
$x^2\geq 0, \forall x\in\mathbb{R}$
$\Rightarrow A(x)=3x^4+x^2+2018\geq 2018>0$ với mọi $x$
$\Rightarrow A(x)\neq 0$ với mọi $x$
Hay $A(x)$ không có nghiệm (đpcm)