u→=(1;−1;2). Giá trị của a, b sao cho v→=(−2;a;b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 4 2020

\(\overrightarrow{v}=-2\left(1;-\frac{a}{2};-\frac{b}{2}\right)\)

Để \(\overrightarrow{u};\overrightarrow{v}\) cùng phương

\(\Leftrightarrow\left\{{}\begin{matrix}-\frac{a}{2}=-1\\-\frac{b}{2}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-4\end{matrix}\right.\)

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1] 2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ 3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng 4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là 5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao...
Đọc tiếp

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1]

2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ

3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng

4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là

5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao tuyến của (P) và (Q) có một vecto chỉ phương là

A \(\overline{u}\) (1;-2;1) B \(\overline{u}\) (1;3;5) C \(\overline{u}\) (2;1-1) D \(\overline{u}\) (-1;3;-5)

6 trong ko gian oxyz cho điểm A(0;1;-2) .Tọa độ điểm H là hình chiếu vuông góc của điểm A trên mặt phẳng (P) :-x-2y+2z-3=0 là

7 trong ko gain oxyz cho điểm A(1;0;2).Tọa độ điểm H là hình chiều vuông góc của điểm A trên đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z+3}{3}\)

8 trong ko gian oxyz , mặt phẳng nào sau đây nhận vecto \(\overline{n}\) =(1;2;3) làm vecto pháp tuyến

A 2z-4z+6=0 B x+2y-3z-1=0 C x-2y+3z+1=0 D 2x+4y+6z+1=0

9 Trong ko gian oxyz , cho ba điểm A(2;1;-1),B(-1;0;4),C(0;-2;-1) .Phương trình nào sau đây là phương trình của mặt phẳng A và vuông góc BC

A :x-2y-5z+5=0 B x-2y-5z-5=0 C x-2y-5z=0 D 2x-y+5z-5=0

10 trong không gian oxyz , cho hai điểm A(4;1;0) ,B(2;-1;2).Trong các vecto sau , một vecto chỉ phương của đường thẳng AB là

A \(\overline{U}\) (3;0;-1) B \(\overline{u}\) (1;1;-1) C \(\overline{u}\) (2;2;0) D \(\overline{u}\) (6;0;2)

11 Trong ko gian oxyz, viết pt tham số của đường thẳng đi qua hai điểm A(1;2;-3) ,B(2;-3;1)

12 Trong ko gian oxyz, cho điểm A(-2;0;3) và mp (p) -2X+Y-Z+11=0.Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mp (P)

13 trong ko gian vói hệ tọa độ oxyz, cho điểm A(1;0;2).TỌA độ điểm \(A^'\) (A phẩy) là điểm đối xúng của điểm A qua đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}\frac{z+3}{3}\)

0
14 tháng 4 2016

\(\overrightarrow{AB}=\left(-1;-2;1\right)\)\(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)

Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)

\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)

Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)

1 tháng 4 2017

Giải:

a) Măt phẳng (P) đi qua điểm M(1; -2; 4) và nhận = (2; 3; 5) làm vectơ pháp tuyến có phương trình:

2(x - 1) + 3(x +2) + 5(z - 4) = 0 ⇔ (P) : 2x + 3y + 5z -16 = 0.

b) Xét = (2 ; -6 ; 6), khi đó ⊥ (Q) là mặt phẳng qua A (0 ; -1 ; 2) và song song với , (nhận , làm vectơ chỉ phương).

Phương trình mặt phẳng (Q) có dạng:

2(x - 0) - 6(y + 1) + 6(z - 2) = 0 ⇔ (Q) :x - 3y + 3z - 9 = 0

c) Gọi (R) là mặt phẳng qua A, B, C khi đó , là cặp vectơ chỉ phương của (R).

= (2 ; 3 ; 6)

Vậy phương trình mặt phẳng (R) có dạng: 2x + 3y + 6z + 6 = 0

Câu 1: B

Câu 2: C

11 tháng 1 2017

\(\overrightarrow{u}\left(x_u;y_u;z_u\right)\)

\(x_u=4x_a-\frac{1}{2}x_b+3x_a=11\)

Làm tương tự, tìm được \(\overrightarrow{u}=\left(11;0;\frac{37}{2}\right)\)

11 tháng 1 2017

Xin lỗi, mình viết sai!

\(x_u=4x_a-\frac{1}{2}x_b+3x_c=11\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Bài 1:

Gọi tọa độ của \(A=(0,0,a)\)\(B=(m,n,p)\)

Vì $(P)$ vuông góc với $(d)$ nên \(\overrightarrow {n_P}=\overrightarrow {u_d}=(2,-1,1)\) kết hợp với $(P)$ chứa $A$ nên PTMP: \((P):2x-y+z-a=0\)

Ta có \(B\in (P)\Rightarrow 2m-n+p-a=0(1)\)

Mặt khác \(B\in (d')\Rightarrow \frac{m-1}{1}=\frac{n}{2}=\frac{p+2}{1}=t\Rightarrow \left\{\begin{matrix} m=t+1\\ n=2t\\ p=t-2\end{matrix}\right.\)

Thay vào $(1)$ ta thu được $t=a$

\(\Rightarrow AB=\sqrt{m^2+n^2+(p-a)^2}=\sqrt{(a+1)^2+(2a)^2+4}=\sqrt{5a^2+2a+5}\geq \frac{2\sqrt{30}}{5}\Leftrightarrow a=\frac{-1}{5}\)

Có nghĩa là để $AB$ min thì $a=\frac{-1}{5}$

Vậy PTMP: \(2x-y+z-\frac{1}{5}=0\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Câu 2:

Thay toạ độ $A$ và $B$ vào $(P)$ có \([3.1-4(-1)+2-1](3.3-4.0+1-1)>0\) nên $A,B$ cùng phía so với $(P)$

Lấy $A'$ đối xứng với $A$ qua $(P)$ \(\Rightarrow MA=MA'\Rightarrow MA+MB=MA'+MB\geq A'B\)

Do đó \((MA+MB)_{\min}\Leftrightarrow A',M,B\) thẳng hàng

Biểu thị $(d)$ là đường thẳng chứa đoạn $AA'$.

Hiển nhiên \((d)\perp (P)\Rightarrow \overrightarrow{u_d}=\overrightarrow {n_P}=(3,-4,1)\)

Kết hợp với $A\in (d)$ nên \(d:\frac{x-1}{3}=\frac{y+1}{-4}=\frac{z-2}{1}=t\)

Khi đó gọi \(H\equiv AA'\cap (P)\). Dễ có \(H=(\frac{1}{13},\frac{3}{13},\frac{22}{13})\)

Lại có $H$ là trung điểm của $AA'$ nên tọa độ của $A'$ là

\(\left\{\begin{matrix} x_{A'}=2x_H-x_A=\frac{-11}{13}\\ y_{A'}=2y_H-y_A=\frac{19}{13}\\ z_{A'}=2z_H-z_A=\frac{18}{13}\end{matrix}\right.\)

Khi đó ta dễ dàng viết được PTĐT chứa $A'B$ là \(\frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\)

Tọa độ của $M$ là nghiệm của hệ

\(\left\{\begin{matrix} \frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\\ 3x-4y+z-1=0\end{matrix}\right.\Rightarrow M(\frac{-213}{79},\frac{-171}{79},\frac{34}{79})\)

.