Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}=\left(-1;-2;1\right)\); \(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)
Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)
\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)
Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)
Giải:
a) Măt phẳng (P) đi qua điểm M(1; -2; 4) và nhận = (2; 3; 5) làm vectơ pháp tuyến có phương trình:
2(x - 1) + 3(x +2) + 5(z - 4) = 0 ⇔ (P) : 2x + 3y + 5z -16 = 0.
b) Xét = (2 ; -6 ; 6), khi đó ⊥ (Q) là mặt phẳng qua A (0 ; -1 ; 2) và song song với , (nhận , làm vectơ chỉ phương).
Phương trình mặt phẳng (Q) có dạng:
2(x - 0) - 6(y + 1) + 6(z - 2) = 0 ⇔ (Q) :x - 3y + 3z - 9 = 0
c) Gọi (R) là mặt phẳng qua A, B, C khi đó , là cặp vectơ chỉ phương của (R).
= (2 ; 3 ; 6)
Vậy phương trình mặt phẳng (R) có dạng: 2x + 3y + 6z + 6 = 0
\(\overrightarrow{u}\left(x_u;y_u;z_u\right)\)
\(x_u=4x_a-\frac{1}{2}x_b+3x_a=11\)
Làm tương tự, tìm được \(\overrightarrow{u}=\left(11;0;\frac{37}{2}\right)\)
Xin lỗi, mình viết sai!
\(x_u=4x_a-\frac{1}{2}x_b+3x_c=11\)
Bài 1:
Gọi tọa độ của \(A=(0,0,a)\) và \(B=(m,n,p)\)
Vì $(P)$ vuông góc với $(d)$ nên \(\overrightarrow {n_P}=\overrightarrow {u_d}=(2,-1,1)\) kết hợp với $(P)$ chứa $A$ nên PTMP: \((P):2x-y+z-a=0\)
Ta có \(B\in (P)\Rightarrow 2m-n+p-a=0(1)\)
Mặt khác \(B\in (d')\Rightarrow \frac{m-1}{1}=\frac{n}{2}=\frac{p+2}{1}=t\Rightarrow \left\{\begin{matrix} m=t+1\\ n=2t\\ p=t-2\end{matrix}\right.\)
Thay vào $(1)$ ta thu được $t=a$
\(\Rightarrow AB=\sqrt{m^2+n^2+(p-a)^2}=\sqrt{(a+1)^2+(2a)^2+4}=\sqrt{5a^2+2a+5}\geq \frac{2\sqrt{30}}{5}\Leftrightarrow a=\frac{-1}{5}\)
Có nghĩa là để $AB$ min thì $a=\frac{-1}{5}$
Vậy PTMP: \(2x-y+z-\frac{1}{5}=0\)
Câu 2:
Thay toạ độ $A$ và $B$ vào $(P)$ có \([3.1-4(-1)+2-1](3.3-4.0+1-1)>0\) nên $A,B$ cùng phía so với $(P)$
Lấy $A'$ đối xứng với $A$ qua $(P)$ \(\Rightarrow MA=MA'\Rightarrow MA+MB=MA'+MB\geq A'B\)
Do đó \((MA+MB)_{\min}\Leftrightarrow A',M,B\) thẳng hàng
Biểu thị $(d)$ là đường thẳng chứa đoạn $AA'$.
Hiển nhiên \((d)\perp (P)\Rightarrow \overrightarrow{u_d}=\overrightarrow {n_P}=(3,-4,1)\)
Kết hợp với $A\in (d)$ nên \(d:\frac{x-1}{3}=\frac{y+1}{-4}=\frac{z-2}{1}=t\)
Khi đó gọi \(H\equiv AA'\cap (P)\). Dễ có \(H=(\frac{1}{13},\frac{3}{13},\frac{22}{13})\)
Lại có $H$ là trung điểm của $AA'$ nên tọa độ của $A'$ là
\(\left\{\begin{matrix} x_{A'}=2x_H-x_A=\frac{-11}{13}\\ y_{A'}=2y_H-y_A=\frac{19}{13}\\ z_{A'}=2z_H-z_A=\frac{18}{13}\end{matrix}\right.\)
Khi đó ta dễ dàng viết được PTĐT chứa $A'B$ là \(\frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\)
Tọa độ của $M$ là nghiệm của hệ
\(\left\{\begin{matrix} \frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\\ 3x-4y+z-1=0\end{matrix}\right.\Rightarrow M(\frac{-213}{79},\frac{-171}{79},\frac{34}{79})\)
.
\(\overrightarrow{v}=-2\left(1;-\frac{a}{2};-\frac{b}{2}\right)\)
Để \(\overrightarrow{u};\overrightarrow{v}\) cùng phương
\(\Leftrightarrow\left\{{}\begin{matrix}-\frac{a}{2}=-1\\-\frac{b}{2}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-4\end{matrix}\right.\)