K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2016

Câu 3 :

- Xét x > \(\frac{3}{5}\) thì 2.|5x - 3| - 2x = 10x - 6 - 2x = 8x - 6 = 14

=> 8x = 20

=> x = 2,5

- Xét x < \(\frac{3}{5}\) thì 2.|5x - 3| - 2x = -10x + 6 - 2x = -12x + 6 = 14

=> -12x = 8

=> x = \(-\frac{2}{3}\)

Vậy x = 2,5 hoặc x = \(-\frac{2}{3}\)

20 tháng 6 2016

câu 3:  |5x-3|=x+7 ( đk x\(\ge-7\))

<=> \(\left[\begin{array}{nghiempt}5x-3=x+7\\5x-3=-x-7\end{array}\right.\)<=> x=5/2 hoặc x=-2/3

câu 4: các góc tỉ lệ nên : \(\frac{A}{7}=\frac{B}{5}=\frac{C}{3}\)=> \(\frac{A+B+C}{7+5+3}\)=12

=> A=84=> góc ngoài A=96

B=60=> góc ngoài B=120

C=36 => góc ngoài =144

=> tỉ lệ các hóc ngoài: 4:5:6

15 tháng 1 2017

Câu 1:

\(P=\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\in Z\)

\(\Rightarrow1⋮n-1\)

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{2;0\right\}\)

15 tháng 1 2017

Câu 2:

Từ \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\Rightarrow\frac{a}{2}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{2}=30\Rightarrow a=30\cdot2=60\\\frac{b}{\frac{3}{2}}=30\Rightarrow b=30\cdot\frac{3}{2}=45\\\frac{c}{\frac{4}{3}}=30\Rightarrow c=30\cdot\frac{4}{3}=40\end{matrix}\right.\)

19 tháng 6 2016

Câu 1 : (Bạn thông cảm hơi mờ chút bucminh)

Hỏi đáp Toán

  \(=-301.\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\)

  \(=43.\left(-7\right).\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\) chia hết cho 43

19 tháng 6 2016

Câu 3 :

*Điều kiện đủ :

Nếu m và n chia hết cho 3 thì m2 ;n2 và mn chia hết cho 3 do đó m2 + mn + n2 chia hết cho 9

*Điều kiện cần :

Ta có :\(m^2+mn+n^2=\left(m-n\right)^2+3mn\) (*)

Nếu m2 + mn + n2 chia hết cho 9 thì từ (*) ta suy ra (m - n)2 chia hết cho 3 <=> (m - n) chia hết cho 3 (1)

Mà (m - n)2 chia hết cho 9 và 3mn chia hết cho 9  => mn chia hết cho 3 => m hoặc n chia hết cho 3 (2)

Từ (1) và (2) => cả 2 số m,n đều chia hết cho 3

6 tháng 9 2016

Bài 1.  Ta luôn có : \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow3,5-\left|x+5\right|\le3,5\Rightarrow\frac{1}{3,5-\left|x+5\right|}\ge\frac{1}{3,5}\)

Hay \(E\ge\frac{2}{7}\) . Dấu "=" xảy ra khi và chỉ khi \(\left|x+5\right|=0\Rightarrow x=-5\)

Vậy Min E = 2/7 <=> x = -5

Bài 2. Ta có : \(\left|x\right|+\left|y\right|=1\Leftrightarrow\left|\frac{1}{b}\right|+\left|\frac{c}{3}\right|=1\)

Xét các trường hợp : 

1. Nếu \(b< 0,c\le0\) thì \(-\frac{1}{b}-\frac{c}{3}=1\Leftrightarrow bc+3=-3b\Leftrightarrow b\left(c+3\right)=-3\)

Vì b,c là các số nguyên nên b = -1 hoặc b = -3

+) Với b = -1 thì c+3 = 3 => c = 0 (t/m)

+) Với b = -3 thì c + 3 = 1 => c = -2 (t/m)

Vậy (b;c) = (-1;0) ; (-3;-2)

2. Nếu \(b>0,c\ge0\) thì \(\frac{1}{b}+\frac{c}{3}=1\Rightarrow bc+3=3b\Rightarrow b\left(c-3\right)=-3\)

Vì b,c là các số nguyên  nên b = 1 hoặc b = 3

+) Với b = 1 thì c-3 = -3 => c = 0 (t/m)

+) Với b = 3 thì c-3 = -1 => c = 2 (t/m)

Vậy (b;c) = (3;2) ; (1;0)

3. Nếu \(b>0,c\le0\) thì \(\frac{1}{b}-\frac{c}{3}=1\Rightarrow b\left(c+3\right)=3\)

Tương tự xét như trên được (b;c) = (1;0) ; (3;-2)

4. Nếu b < 0 , \(c\ge0\) thì \(\frac{c}{3}-\frac{1}{b}=1\Rightarrow b\left(c-3\right)=3\)

=> (b;c) = (-1;0) ; (-3;2)

Vậy (b;c) = (-1;0) ; (-3;-2) ; (3;2) ; (1;0) ; (3;-2) ; (-3;2)

Bài 5: 

a: Xét ΔHBM và ΔKCM có

MH=MK

\(\widehat{HMB}=\widehat{KMC}\)

MB=MC

Do đó: ΔHBM=ΔKCM

b: Xét tứ giác BHCK có

M là trung điểm của CB

M là trung điểm của HK

Do đó: BHCK là hình bình hành

Suy ra: CK//BH

hay CK\(\perp\)AC

Câu 1: Có 4 giá trị

Câu 3: \(A\le\dfrac{10}{5}=2\)

I, Trắc nghiệmCâu 1: Số nào sau đây = 5/2 ?A, 25/4     B, \(\sqrt{\frac{25}{-2}.\frac{-1}{2}}\)     C, \(-\sqrt{\frac{5^2}{2^2}}\)     D, \(\sqrt{\frac{3^2+4^2}{2}}\)Câu 2: Số tự nhiên x thỏa mãn (1/4)x = (1/8)4 : (1/2)2 là..........Câu 3: Nếu \(\sqrt{x-1}=2\) thì x2 = .....Câu 4: Nếu x : 3 = y: (-7) và x - y = 30 thì x = ..... và y = .....Câu 5: Cho hàm số y = f(x) = -3x2. Kết quả nào sau đây là sai?A, f(3) = 27     B, f(-1) = -f(1)...
Đọc tiếp

I, Trắc nghiệm

Câu 1: Số nào sau đây = 5/2 ?

A, 25/4     B, \(\sqrt{\frac{25}{-2}.\frac{-1}{2}}\)     C, \(-\sqrt{\frac{5^2}{2^2}}\)     D, \(\sqrt{\frac{3^2+4^2}{2}}\)

Câu 2: Số tự nhiên x thỏa mãn (1/4)x = (1/8)4 : (1/2)2 là..........

Câu 3: Nếu \(\sqrt{x-1}=2\) thì x2 = .....

Câu 4: Nếu x : 3 = y: (-7) và x - y = 30 thì x = ..... và y = .....

Câu 5: Cho hàm số y = f(x) = -3x2. Kết quả nào sau đây là sai?

A, f(3) = 27     B, f(-1) = -f(1)     C, f(0) - f(1) = 3     D, f(-2015) = f(2015)

Câu 6: Cho tam giác ABC = tam giác MNP có góc A = 50o; góc N = 70o. Số đo góc P là.......o

Câu 7:Tam giác ABC có góc A = 60o; góc C = 50o, BD là tia phân giác góc B (D thuộc AC)

Số đo góc ADB là .....o

Câu 8: Cho tam giác ABC và tam giác A'B'C' có góc B = góc B' ; góc C = góc C'

Để tam giác ABC = tam giác A'B'C' thì cần có thêm điều kiện nào sau đây?

A, BC = C'B'     B, AB = A'B'     C, AC = A'C'     D, góc A = góc A'

 

II, Tự luận

Câu 1: Tính hợp lí nếu có thể

a, \(\left(-3\right)^2.\frac{1}{3}-\left|-7\right|+\left(-5\right)^3:\sqrt{25}\)

b, \(3,5.\frac{4}{49}-\left[2,\left(4\right).2\frac{5}{11}\right]:\left(-8,4\right)\)

Câu 2: Tìm x biết

a, \(\sqrt{x}\left(x-\frac{1}{2}\right)-4\left(x-\frac{1}{2}\right)=0\)

b, \(\left(9x^2-1\right)^2+\left|x-\frac{1}{3}\right|=0\)

c, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\text{ và }x-2y+3z=141\)

Câu 3: Cho hàm số y = f(x) = (3m - 2)x

a, Tìm m biết điểm I(2; 8) thuộc đồ thị hàm số

b, Vẽ đồ thị hàm số với m vừa tìm đc, CMR: f(-2) + f(-4) = 3.f(-2)

Câu 4: Chia 210 quyển vở thành 4 phần sao cho: phần thứ nhất và thứ hai tỉ lệ với 2 và 3; phần thứ hai và thứ 3 tỉ lệ với 4 và 5; phần thứ 3 và thứ 4 tỉ lệ với 6 và 7. Tính số vở mỗi phần

Câu 5: Cho tam giác ABC. Gọi D là trung điểm AB; E là trung điểm BC. Trên tia đối của tia DE lấy điểm K sao cho DK = DE

a, CM: tam giác BDE = tam giác ADK và AK // BC

b, Gọi I là trung điểm AE. Chứng minh I là trung điểm KC

c, Giả sử góc A = 65o; góc C = 55o. Tính các góc B và D của tam giác BDE

Câu 6: Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) với a; b; c; x; y; z khác 0

CMR: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

0
29 tháng 9 2016

sai cả hai câu rồi kìa !

29 tháng 9 2016

a) \(\frac{x}{7}=\frac{18}{14}\)

\(\Rightarrow\frac{x}{7}=\frac{9}{7}\)

\(\Rightarrow x=7\)

Vậy x=7

b)\(6:x=1\frac{3}{4}:5\)

\(\frac{6}{x}=\frac{7}{4}:5\)

\(\frac{6}{x}=\frac{7}{20}\)

\(\Rightarrow6.20=7x\)

\(\Rightarrow120=7.x\)

\(\Rightarrow x=\frac{120}{7}\)

Vậy \(x=\frac{120}{7}\)

 

16 tháng 10 2016

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

16 tháng 10 2016

Bài 5:

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b = c