Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{3}+\frac{1}{3}\cdot\left(-\frac{2}{5}\right)\\ =\frac{2}{3}+\frac{-2}{15}\\ =\frac{10}{15}+\frac{-2}{15}\\ =\frac{8}{15}\)
b) \(0,75\cdot1\frac{7}{9}-1\frac{2}{5}:\frac{-21}{20}\\ =\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}\cdot\frac{-20}{21}\\ =\frac{4}{3}-\frac{-4}{3}\\ =\frac{4}{3}+\frac{4}{3}\\ =\frac{4}{3}\cdot2\\ =\frac{8}{3}\)
c) \(\frac{-2}{17}+\frac{15}{23}+\frac{15}{-17}-\frac{-4}{19}+\frac{8}{23}\\ =\frac{-2}{17}+\frac{15}{23}+\frac{-15}{17}+\frac{4}{19}+\frac{8}{23}\\ =\left(\frac{-2}{17}+\frac{-15}{17}\right)+\left(\frac{15}{23}+\frac{8}{23}\right)+\frac{4}{19}\\ =\left(-1\right)+1+\frac{4}{19}\\ =0+\frac{4}{19}\\ =\frac{4}{19}\)
d) \(2019^0\cdot\left(6-2\frac{4}{5}\right)\cdot3\frac{1}{8}-1\frac{3}{5}:25\%\\ =1\cdot\left(\frac{30}{5}-\frac{14}{5}\right)\cdot\frac{25}{8}-\frac{8}{5}:\frac{1}{4}\\ =1\cdot\frac{16}{5}\cdot\frac{25}{8}-\frac{8}{5}\cdot4\\ =\frac{16}{5}\cdot\frac{25}{8}-\frac{32}{5}\\ =\frac{50}{5}-\frac{32}{5}\\ =\frac{18}{5}\)
e) \(\left(\frac{7}{8}-\frac{1}{2}\right)\cdot2\frac{2}{3}-\frac{3}{7}\cdot\left(2,5^2\right)\\ =\left(\frac{7}{8}-\frac{4}{8}\right)\cdot\frac{8}{3}-\frac{3}{7}\cdot6,25\\ =\frac{3}{8}\cdot\frac{8}{3}-\frac{3}{7}\cdot\frac{25}{4}\\ =1-\frac{75}{28}\\ =\frac{28}{28}-\frac{75}{28}\\ =\frac{-47}{28}\)
a, \(\frac{2}{3}+\frac{1}{3}.\left(\frac{-2}{5}\right)\)
= \(\frac{2}{3}+\frac{-2}{15}=\frac{8}{15}\)
b, \(0,75.1\frac{7}{9}-1\frac{2}{5}:\frac{-21}{20}\)
= \(\frac{3}{4}.\frac{16}{9}-\frac{7}{5}.\frac{-20}{21}\)
= \(\frac{4}{3}-\left(\frac{-4}{3}\right)=\frac{8}{3}\)
c, \(\frac{-2}{17}+\frac{15}{23}+\frac{15}{-17}+\frac{4}{19}+\frac{8}{23}\)
= \(\left(\frac{-2}{17}+\frac{-15}{17}\right)+\left(\frac{15}{23}+\frac{8}{23}\right)+\frac{4}{19}\)
= \(\left(-1\right)+1+\frac{4}{19}=0+\frac{4}{19}=\frac{4}{19}\)
d, \(\left(6-2\frac{4}{5}\right).3\frac{1}{8}-1\frac{3}{5}:25\%\)
=> \(\left(6-\frac{14}{5}\right).\frac{25}{8}-\frac{8}{5}:25\%\)
= \(\frac{16}{5}.\frac{25}{8}-\frac{8}{5}.25:100\)
= 10 - 0,4 = 9,6
e, \(\left(\frac{7}{8}-\frac{1}{2}\right).2\frac{2}{3}-\frac{3}{7}.\left(2,5^2\right)\)
=> \(\frac{3}{8}.\frac{8}{3}-\frac{3}{7}.6,25\)
= \(1-\frac{75}{28}=\frac{-47}{28}\)
2. a) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)
b) \(71^{50}=\left(71^2\right)^{25}=5041^{25}\)
\(37^{75}=\left(3^3\right)^{25}=27^{25}\)
Vì \(5041^{25}>27^{25}\Rightarrow71^{50}>37^{75}\)
c) \(\frac{201201}{202202}=\frac{201201:1001}{202202:1001}=\frac{201}{202}\)
\(\frac{201201201}{202202202}=\frac{201201201:1001001}{202202202:1001001}=\frac{201}{202}\)
Vì \(\frac{201}{202}=\frac{201}{202}\Rightarrow\frac{201201}{202202}=\frac{201201201}{202202202}\)
\(2.THPT\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}\)
\(A=\frac{891}{100}\)
\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(B=\frac{1}{5}-\frac{1}{95}\)
\(B=\frac{18}{95}\)
\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(D=\frac{1}{2}-\frac{1}{28}\)
\(D=\frac{13}{28}\)
a . 7/12 . 6/11 + 7/12 . 5/11 - 2 7/12
= 7/12 . ( 6/11 + 5/11 ) - 31/12
= 7/12 . 1 - 31/12
= 7/12 - 31/12
= -2
b . -5/9 . -6/13 + 5/-9 . -5/13 - 5/9
= -5/9 . ( -6/13 + -5/13 ) - 5/9
= -5/9 . ( -1 ) -5/9
= 5/9 - 5/9
= 0
Bài 1:
a) Ta có: \(\frac{-5}{7}+\frac{2}{7}+\frac{4}{-9}+\frac{4}{9}\)
\(=-\frac{3}{7}+\frac{-4}{9}+\frac{4}{9}\)
\(=-\frac{3}{7}\)
b) Ta có: \(\left(\frac{1}{2}:\frac{3}{4}\right)^2\)
\(=\left(\frac{1}{2}\cdot\frac{4}{3}\right)^2\)
\(=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)
c) Ta có: \(\frac{1}{2}+\frac{3}{4}-\left(\frac{4}{5}+\frac{3}{4}\right)\)
\(=\frac{1}{2}+\frac{3}{4}-\frac{4}{5}-\frac{3}{4}\)
\(=\frac{1}{2}-\frac{4}{5}\)
\(=\frac{5}{10}-\frac{8}{10}=\frac{-3}{10}\)
d) Ta có: \(5^6:5^4+2^3\cdot2^2-225:15^2\)
\(=5^2+2^5-\frac{15^2}{15^2}\)
\(=25+32-1\)
\(=56\)
e) Ta có: \(\frac{7}{23}+\frac{4}{17}-\frac{7}{23}+\frac{13}{17}\)
\(=\frac{4}{17}+\frac{13}{17}\)
\(=\frac{17}{17}=1\)
g) Ta có: \(19\frac{1}{4}\cdot\frac{7}{12}-15\frac{1}{4}\cdot\frac{7}{12}\)
\(=\frac{7}{12}\left(19+\frac{1}{4}-15-\frac{1}{4}\right)\)
\(=\frac{7}{12}\cdot4=\frac{7}{3}\)