K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

a)\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

\(\Leftrightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\)

\(\Leftrightarrow\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)

\(\Leftrightarrow\begin{cases}c< 0\\ab+bc+ca+c^2=c^2\end{cases}\)\(\Leftrightarrow ab+bc+ca=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\)

Đpcm

20 tháng 10 2016

phần b chắc quy đồng nó lên quá =))

30 tháng 3 2020

a) 

a)   n23n+:  n2 = n - 1 (R=3) . Để phép chia hết nên suy ra:  n-1 thuộc Ư(3) . Suy ra : n = { 4 ; -2 ; 0 ; 2 }

25 tháng 7 2019

2/Áp dụng bất đẳng thức cô si, ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{\left(a+b+c\right)}{3}}=\frac{9}{a+b+c}=9^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Bài 1:

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

Do đó: ΔBAC đồng dạng với ΔBHA

b: Xét ΔBAC vuông tại A có AH là đường cao

nên \(HA^2=HB\cdot HC\)

c: Ta có: ΔHAB vuông tạiH

mà HM là đường trung tuyến

nên HM=AM

TA có: ΔHAC vuông tại H

mà HNlà đường trung tuyến

nên HN=AN

Xét ΔNAM và ΔNHM có

NA=NH

AM=HM

NM chung

Do đó: ΔNAM=ΔNHM

Suy ra: góc NAM=góc NHM=90 độ

=>NAMH là tứ giác nội tiếp đường kính NM

=>O là trung điểm của NM

20 tháng 12 2016

Tuyển " sư phụ "............................~~ K thành công !!! leuleu

20 tháng 3 2017

a) 3x+2(x-5)=-x+2

<=> 3x+2x+x=2+10

<=>6x=12

<=>x=2

b) 3x2-2x=0

<=>x(3x-2)=0

<=>\(\left[{}\begin{matrix}x=0\\3x-2=0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

c) \(\dfrac{2x}{3}\)+\(\dfrac{x-4}{6}\)=2-\(\dfrac{x}{2}\)

<=>\(\dfrac{8x+2x-8}{12}\)=\(\dfrac{24-6x}{12}\)

<=> 8x+2x-8=24-6x

<=>8x+2x+6x=24+8

<=>16x=32

<=>x=2

d) \(\dfrac{x-2}{x+2}\)-\(\dfrac{3}{x-2}\)= -\(\dfrac{2\left(x-11\right)}{4-x^2}\) ( ĐKXĐ: x\(\ne\)\(\pm\)2)

<=> \(\dfrac{\left(x-2\right)^2-3\left(x+2\right)}{x^2-4}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)

=> (x-2)2-3(x+2)=2(x-11)

<=> x2-4x+4-3x-6=2x-22

<=> x2-4x-3x-2x=-22-4+6

<=> x-9x+20=0

<=> (x-4)(x-5)=0

<=>\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) ( thỏa mãn diều kiện )

d) (x2+1)(x2-4x+4)=0

=> x2-4x+4=0 (x2+1\(\ge\)1 với mọi x)

=>(x-2)2 =0

=>x=2

20 tháng 3 2017

Cảm ơn bạn nhăn Ngọc Vô Tâm