Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 2x - 3 ) - ( x - 5 ) = ( x + 7 ) - ( x + 2 )
<=> 2x - 3 - x + 5 = x + 7 - x - 2
<=> x = 3
b)(7x-5)-(6x+4)=(2x+3)-(2x+1)
<=> 7x - 5 - 6x - 4 = 2x + 3 - 2x - 1
<=> x = 11
c)(9x-3)-(8x+5)=(3x+2)
<=> 9x - 3 - 8x - 5 = 3x + 2
<=> -2x = 10
<=> x = -5
d)(x+7)-(2x+3)=(3x+5)-(2x+4)
<=> x + 7 - 2x - 3 = 3x + 5 - 2x - 4
<=> -2x = -3
<=> x = 3/2
ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠ
a)25/x+1 - 7/6 = 1/3 - 0,5
25/x+1 - 7/6 = 1/3 -1/2
25/x+1 - 7/6 = -1/6
25/x+1 = -1/6 + 7/6
25/x+1 = 1
25/x+1 = 25/25
=>25 = x + 1
x = 25 - 1
x = 24
1/a
3/5 - 3 < 2/3 x + 3/4 < 1/2 + 7/9
=> 3/5 - 3 - 3/4 < 2/3 x < 1/2 + 7/9 - 3/4
=> -63/20 < 2x/3 < 19/36
=> -567/180 < 120x/180 < 95/180
=> 120x \(\in\left\{0;-120;-240;-360;-480\right\}\)
=> x \(\in\left\{0;-1;-2;-3;-4\right\}\)
1/b
( 3x + 5 )( 2x - 7 ) < 0
=> 3x + 5 > 0 và 2x - 7 < 0
hoặc 3x + 5 < 0 và 2x - 7 > 0
TH1 : 3x + 5 > 0 và 2x - 7 < 0
Vì 2x - 7 < 0
=> x < 4
=> x \(\in\) { 0 ; 1 ; 2 ; 3 }
TH2 : 3x + 5 < 0 và 2x - 7 > 0
Vì 2x - 7 > 0
=> x > 3 ( 1 )
Vì 3x + 5 < 0
=> x là số nguyên âm ( 2 )
Do ( 1 ) mâu thuẫn với ( 2 ) nên ko tồn tại x ở TH này .
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 }
a) \(\frac{3x-6}{x+4}=\frac{2\left(x+5\right)+\left(x-3\right)}{x-2}\)
\(\frac{3\left(x-2\right)}{x+4}=\frac{2\left(x+5\right)+x-3}{x-2}\)
\(\frac{3\left(x-4\right)}{x+4}=\frac{3x+7}{x-2}\)
\(3\left(x-2\right)\left(x-2\right)=\left(3x+7\right)\left(x+4\right)\)
\(3\left(x-2\right)^2=\left(3x+7\right)\left(x+4\right)\)
\(3x^2-12x+12=3x^2+12x+7x+28\)
\(3x^2-12x+12=3x^2+19x+28\)
\(-12x+12=19x+28\)
\(12=19x+28+12x\)
\(19x+28+12x=12\) (chuyển vế)
\(31x+28=12\)
\(31x=12-28\)
\(31x=-16\)
\(x=-\frac{16}{31}\)
\(\Rightarrow x=-\frac{16}{31}\)
Ta có 1/2*3=1/2-1/3;
1/3*4=1/3-1/4
......................(tương tự với các số khác)
1/149*150=1/149-1/150
=>A=1/2-1/3+1/3-1/4+1/4-1/5+...-1/149+1/149-1/150=1/2-1/150
A=75/150-1/150=74/150=37/75
Vậy A= 37/75
a) pt <=> \(\frac{x\left(x+1\right)}{2}=500500\)
<=> \(x^2+x=1001000\)
<=> \(x^2-1000x+1001x-1001000=0\)
<=> \(\left(x-1000\right)\left(x+1001\right)=0\)
<=> \(\orbr{\begin{cases}x=1000\\x=-1001\end{cases}}\)
Do \(x>0\)=> \(x=1000\)
b)
<=> \(2x=210\)
<=> \(x=105\)
c)
<=> \(6x-81=3.7\)
<=> \(x=17\)
d)
<=> \(125-5\left(3x-1\right)=5^2\)
<=> \(5\left(3x-1\right)=100\)
<=> \(3x-1=20\)
<=> \(x=7\)
e)
<=> \(4^{x+1}+1=65\)
<=> \(4^{x+1}=64\)
<=> \(x+1=3\)
<=> \(x=2\)
j)
<=> \(2\left(2x-3\right)=14\)
<=> \(2x-3=7\)
<=> \(x=5\)
1)\(25x+3\left(4-6x\right)=50\)
\(25x+12-18x=50\)
\(7x+12=50\)
\(7x=38\)
\(x=\frac{38}{7}\)
2)\(4\left(2x+3\right)+2\left(3x+1\right)=120\)
\(8x+12+6x+2=120\)
\(14x+14=120\)
\(14x=106\)
\(x=\frac{53}{7}\)