Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{\left(1+1+1\right)^2}{3+xy+yz+xz}=\dfrac{9}{3+xy+yz+xz}\)
Mặt khác,theo AM-GM: \(xy+yz+xz\le x^2+y^2+z^2=3\)
\(\Rightarrow\dfrac{9}{3+xy+yz+xz}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" khi: \(x=y=z=1\)
Áp dụng BĐT :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ≥ 9
Trong đó : a = xy ; b = yz ; c = xz
⇒ ( xy + yz + xz )\(\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) ≥ 9 ( * )
Áp dụng BĐT cô - si :
x2 + y2 ≥ 2xy ( x > 0 ; y > 0) ( 1 )
y2 + z2 ≥ 2yz ( y > 0 ; z > 0 ) ( 2)
z2 + x2 ≥ 2xz ( z >0 ; x > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) ⇒ x2 + y2 + z2 ≥ xy + yz + xz ( **)
Từ ( * ; **)
⇒(x2 + y2 + z2).A ≥ ( xy + yz + xz). A ≥ 9
⇒ 3A ≥ 9
⇒ A ≥ 3
⇒ AMIN = 3 ⇔ x = y = z
Bài 1: Chỉ cần chú ý đẳng thức \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\) là ok!
Làm như sau: Từ \(x^2+\frac{1}{x^2}=14\Rightarrow x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=16\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=16\). Do \(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=4\)
: \(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=14\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=14\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)-4\)
\(=14.4.\left(14-1\right)-4=724\) là một số nguyên (đpcm)
P/s: Lâu ko làm nên cũng ko chắc đâu nhé!
Áp dụng BĐT AM - GM ta có :
\(3\ge x^2+y^2+z^2\ge xy+yz+zx\)
Sử dụng BĐT Cauchy schwarz dưới dạng engel ta có :
\(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{\left(1+1+1\right)^2}{1+1+1+xy+yz+zx}=\dfrac{9}{3+xy+yz+zx}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)
Vậy GTNN của P là \(\dfrac{3}{2}\) . \("="\Leftrightarrow x=y=z=1\)