Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì n \(\in\) N nên n2 là số tự nhiên
mà n2 \(⋮\) 3 nên n2 có dạng 3k với k là số tn
khi đó 3k là số chính phương mà 3 là số nguyên tố
\(\Rightarrow\) k có dạng 3a với a là số chính phương
khi đó n bằng 3\(\sqrt{a}\) với a là số chính phương
\(\Rightarrow\)n \(⋮\) 3
n chia hết cho 3 => n =3k (k ∈Z)
n(n+1) =3k (3k+1)
nếu k le ; k =2t+1 (t ∈Z)
3k (3k+1) =3(2t+1 )[ (3.(2t+1) +1 ] =3(2t+1 )[6t+3 +1) =3.(2t+1 )[6t+4)
=3(2t+1 ).2.(3t+2) =6(2t+1 ) (3t+2) chia hết cho 6
nếu k chẵn ; k =2t (t ∈Z)
3k (3k+1) =6t (3k+1 ] = chia hết cho 6
=> n(n+1) chia hết cho 6 nếu n chia hết cho 3=> dpcm
ếu nn chia hết cho 33 thì n = 3kn=3k với k \in \mathbb{N}k∈N.
Xét k=2mk=2m thì n = 6mn=6m suy ra n(n+1) = 6m(6m+1)n(n+1)=6m(6m+1) chia hết cho 66.
Xét k = 2m+1k=2m+1 thì n = 3(2m+1) = 6m+3n=3(2m+1)=6m+3.
Suy ra n(n+1) = (6m+3)(6m+4) = 3.(2m+1).2(3m+2) = 6.(2m+1).(3m+2)n(n+1)=(6m+3)(6m+4)=3.(2m+1).2(3m+2)=6.(2m+1).(3m+2) chia hết cho 66.
Ta có : n là số tự nhiên lẻ => n = 2k+1 (\(k\in N^{\text{*}}\))
\(n^2-1=\left(2k+1\right)^2-1=4k^2+4k+1-1=4k\left(k+1\right)\)
Vì k(k+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2.
Do đó : 4k(k+1) chia hết cho 2.4=8
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
a/ \(9^{2n+1}+1=\left(9+1\right)\left(9^{2n}-9^{2n-1}+...\right)=10\left(9^{2n}-9^{2n-1}+...\right)\)
Chia hết cho 10
b/ \(3^{4n+1}+2=3^{4n+1}-3+5=3\left(3^{4n}-1\right)+5\)
\(=3\left(81^n-1\right)+5=3.80\left(81^{n-1}+...\right)+5\)
Cái này chia hết cho 5