Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, \(\left(7-3x\right)\left(2x+1\right)=0\)
=> \(7-3x=0\) hoặc \(2x+1=0\)
\(3x=7-0\) hoặc \(2x=0-1\)
\(3x=7\) hoặc \(2x=-1\)
\(x=7:3\) hoặc \(x=-1:2\)
\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)
Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)
\(xy-x-y+1=0\)
\(\Rightarrow x.\left(y-1\right)-\left(y-1\right)=0\)
\(\Rightarrow\left(y-1\right).\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy \(x=y=1\)
Chúc bạn học tốt!!!
Tìm x,y biết:
xy-x-y+1=0
=> x(y-1)-y=0-1
=> x(y-1)- (y-1)= (-1)
=> (y-1)(x-1)=(-1)
\(\Rightarrow\left[{}\begin{matrix}y-1=1;x-1=-1\\y-1=-1;x-1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2;x=0\\y=0;x=2\end{matrix}\right.\)
Với mọi x ta có:
|x - 2001| = |2001 - x|
=> A = |x - 2002| + |2001 - x|
Với mọi x ta cũng có:
|x - 2002| + | 2001 - x| \(\ge\)|(x - 2002) + (2001 - x)|
A \(\ge\) |1|
A \(\ge\) 1
Dấu bằng xảy ra <=> (x - 2002).(2001 - x) \(\ge\) 0
=> x - 2002 \(\ge\) 0; 2001 - x \(\ge\) 0 (1)
hoặc x - 2002 \(\le\) 0; 2001 - x \(\le\) 0 (2)
Từ (1) => x > hoặc = 2002; x < hoặc = 2001 => x không có giá trị thoả mãn
Từ (2) => x < hoặc = 2002 ; x > hoặc = 2001 => 2001 \(\le\) x \(\le\) 2002
Vậy 2001 \(\le\) x \(\le\) 2002 thì A có giá trị nhỏ nhất = 1
a) \(VT=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=VP\)
Vậy \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=2^{32}-1\)
\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)
\(\Leftrightarrow\frac{x+1}{203}+1+\frac{x+2}{202}+1+\frac{x+3}{201}+1+\frac{x+4}{200}+1+\frac{x+5}{199}+1=0\)
\(\Leftrightarrow\frac{x+204}{203}+\frac{x+204}{202}+\frac{x+204}{201}+\frac{x+204}{200}+\frac{x+204}{199}=0\)
\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)
\(\Leftrightarrow x+204=0\).Do \(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\ne0\)
\(\Leftrightarrow x=-204\)
Ta có :
\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)
\(\Leftrightarrow\left(\frac{x+1}{203}+1\right)+\left(\frac{x+2}{202}+1\right)+\left(\frac{x+3}{201}+1\right)+\left(\frac{x+4}{200}+1\right)+\left(\frac{x+5}{199}+1\right)=0\)
\(\Leftrightarrow\left(\frac{x+204}{203}\right)+\left(\frac{x+4}{202}\right)+\left(\frac{x+4}{201}\right)+\left(\frac{x+204}{200}\right)+\left(\frac{x+204}{199}\right)=0\)
\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)
Dễ thấy \(\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)\ne0\)
=> x + 204 = 0
<=> x = - 204
Vậy pt có nghiệm x = - 204
Đề sai bạn nhé. Đưa dữ kiện 3 ẩn bắt tính biểu thức chứa 2 ẩn làm sao làm được ?
Bạn kiểm tra lại nha
\(3x^2-8x+5-A=-2A+4x-6+x^2\)
\(\Rightarrow3x^2-8x+5=-2A+A+4x-6+x^2\)
\(\Rightarrow3x^2-8x+5=-A+4x-6+x^2\)
\(\Rightarrow3x^2=-A+4x-6+x^2-5+8x\)
\(\Rightarrow3x^2=-A+12x-11+x^2\)
\(\Rightarrow3x^2-x^2=-A+12x-11\)
\(\Rightarrow2x^2=-A+12x-11\)
Làm sao tìm được A nhỉ
a) \(\left|4x-1\right|-\left|3x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow\left|4x-1\right|=\left|3x-\dfrac{1}{2}\right|\\ \Leftrightarrow\left[{}\begin{matrix}4x-1=3x-\dfrac{1}{2}\\4x-1=\dfrac{1}{2}-3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x-3x=1-\dfrac{1}{2}\\4x+3x=\dfrac{1}{2}+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\7x=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{14}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{3}{14}\right\}\) là nghiệm của pt.
b) \(\left|x-1\right|-2x=\dfrac{1}{2}\\ \Leftrightarrow\left|x-1\right|=2x+\dfrac{1}{2}\left(ĐK:x\ge\dfrac{-1}{4}\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x+\dfrac{1}{2}\\x-1=-2x-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-2x=1+\dfrac{1}{2}\\x+2x=1-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=\dfrac{3}{2}\\3x=\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\left(ktmđk\right)\\x=\dfrac{1}{6}\left(tmđk\right)\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{6}\) là nghiệm của pt.
Lời giải:
a.
$|4x-1|-|3x-\frac{1}{2}|=0$
$\Leftrightarrow |4x-1|=|3x-\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} 4x-1=3x-\frac{1}{2}\\ 4x-1=\frac{1}{2}-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{3}{14}\end{matrix}\right.\)
b. Nếu $x\geq 1$ thì:
$|x-1|-2x=\frac{1}{2}$
$\Leftrightarrow x-1-2x=\frac{1}{2}$
$\Leftrightarrow -x-1=\frac{1}{2}$
$\Leftrightarrow x=\frac{-3}{2}$ (vô lý vì $x\geq 1$)
Nếu $x< 1$ thì:
$1-x-2x=\frac{1}{2}$
$\Leftrightarrow x=\frac{1}{6}$ (tm)