Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8x3 - 27y3 = 23 . x3 - 33 . y3 = ( 2x )3 - ( 3y )3 = ( 2x - 3y ) [(2x)2 + 12xy + (3y)2 ].
a) Đặt \(x^2-y=a\) , ta có đa thức : \(3a^2+4a-15=\left(3a^2-5a\right)+\left(9a-15\right)=a\left(3a-5\right)+3\left(3a-5\right)=\left(a+3\right)\left(3a-5\right)\)
Thay \(x^2-y=a\)vào đa thức trên được : \(\left(x^2-y+3\right)\left(3x^2-3y-5\right)\)
b) \(12x^2-12xy+3y^2-20x+10y+8=\left(12x^2-6xy-12x\right)-\left(6xy-3y^2-6y\right)-\left(8x-4y-8\right)\)\(=6x\left(2x-y-2\right)-3y\left(2x-y-2\right)-4\left(2x-y-2\right)=\left(2x-y-2\right)\left(6x-3y-4\right)\)
a) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
Thay 12 = x + 1 vào biểu thức trên, ta có:
x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + 111
= x4 - x4 - x3 + x3 + x2 - x2 - x + 111
= 111 - x (*)
Thay x = 11 vào (*), ta có:
111 - 11
= 100
Vậy giá trị của biểu thức trên là 100 tại x = 11
(x + y + z)3 - x3 - y3 - z3
= x3 + y3 + z3 + 3(x + y)(x + z)(y + z) - x3 - y3 - z3
= 3(x + y)(x + z)(y + z)
A = 2x2 + 10x - 1
\(=2\left(x^2+5x+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
\(MinA=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)
bài a) bn trên đã dẫn link cho bn r
bài b)
Đặt x-y=a;y-z=b;z-x=c
\(=>a+b+c=x-y+y-z+z-x=0\)
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)
Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)
\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
a) Ta có :
\(a^3+b^3+c^3-3abc\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
P/s tham khảo nha
hok tốt
(x^2-x+2)^2+(x-2)^2
= [(x^2-x+2)+(x-2)]^2-2[(x^2-x+2)*(x-2)] (áp dụng (a^2+b^2)=(a+b)^2-2ab
=(x^2)^2- 2((x^3-3x^2+4x-4)
=x^4-2x^3+6x^2-8x+8
giờ phân tích đa thức
x^4-2x^3+6x^2+8x-8
=(x^4-2x^3+2x^2)+(4x^2-8x+8) (cái này làm bài tập nhiêu nhìn ra nhanh)
=[x^2(x^2-2x+2)]+4(x^2-2x+2) dẹp luôn
=(x^2-2x+2)(x^2+4)
\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=\left[\left(x-2\right)\left(x+1\right)\right]^2+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x+1\right)^2+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x^2+2x+1\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)
\(8x^3+12x^2y+6xy^2+y^3-z^3\)
\(=\left(2x+y\right)^3-z^3\)
\(=\left(2x+y-z\right)\left[4x^2+z\left(2x+y\right)+z^2\right]\)
a, 8a3 - 36a2 +54ab2 - 27b3
=(8a3-36a2b +54ab2 - 27b3)
=(2a-3b)2
=(2a-3b)(2a-3b)(2a-3b)
b, 8x3 + 12x2y + 6xy2 + y3 - z 3
=(8x3 + 12x2y + 6xy2 + y3) - z3
=(2x + y)3 - y3
=(2x + y +z) . [ (2x + Y)2 + 2(2x + y)+ z2
= (2x + y + z)(4x2 + 4xy + y2 + 4x + 2y + z2