Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.100}\)
\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A< 2-\frac{1}{50}\)
\(A< 2\)
b, \(B=2+2^2+2^3+...+2^{30}\)
Ta có :\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{29}+2^{30}\right)\)
\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{29}\left(1+2\right)\)
\(B=2.3+2^3.3+...+2^{29}.3\)
\(B=3\left(2+2^3+...+2^{29}\right)\)chia hết cho 3(1)
Lại có\(B=\left(2+2^2+2^4\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(B=2\left(1+2+4\right)+...+2^{28}\left(1+2+4\right)\)
\(B=2.7+...+2^{28}.7\)
\(B=7\left(2+...+2^{29}\right)\) chia hết cho 7 (2)
Mà (3,7)=1 (3)
Từ (1)(2)(3) => B chia hết cho 21
Ta thấy :
\(\frac{1}{1^2}=1\); \(\frac{1}{2^2}<\frac{1}{1.2}\); \(\frac{1}{3^2}<\frac{1}{2.3}\); .... ; \(\frac{1}{50^2}<\frac{1}{49.50}\)
=> A \(=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}\)\(=2-\frac{1}{50}\)< 2
=> A < 2
đúng mình cái nhé bạn
\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\\A=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2} \\ A< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ A< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ A< 1+1-\dfrac{1}{50}\\ A< 2-\dfrac{1}{50}< 2\)
Vậy \(A< 2\)
Ta có :
\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+................+\dfrac{1}{50^2}\)
\(A=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+.................+\dfrac{1}{50^2}\)
\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+..............+\dfrac{1}{49.50}\)
\(A< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.............+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A< 1+1-\dfrac{1}{50}\)
\(A< 2-\dfrac{1}{50}< 2\)
\(\Rightarrow A< 2\rightarrowđpcm\)
~ Chúc bn học tốt ~
đặt B=1/2.3+1/3.4+...+1/49.50
=1/1.2+1/2.3+1/3.4+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/50.50<1-1/2+1/2-1/3+...+1/49-1/50 (3)
từ (1),(2),(3) =>A<2
A=1/1^2+1/2^2+1/3^2+........+1/50^2
1/1^2=1/2x2=1-1/2
1/3^2=1/3x3=1-1/3
....................................
1/50^2=1/50x50=1-1/50
=>A < 1/1^2+1-1/2+1/2-1/3+1/3-1/4+.............+1/49-1/50
=>A < 1+(1-1/50)<1+1=2
=> A<2
A=1/1^2+1/2^2+1/3^2+........+1/50^2
1/1^2=1/2x2=1-1/2
1/3^2=1/3x3=1-1/3
....................................
1/50^2=1/50x50=1-1/50
=>A < 1/1^2+1-1/2+1/2-1/3+1/3-1/4+.............+1/49-1/50
=>A < 1+(1-1/50)<1+1=2
=> A<2