Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-5x\)
\(=x\left(x-5\right)\)
\(b,5x\left(x+5\right)+4x+20\)
\(=5x\left(x+5\right)+4\left(x+5\right)\)
\(=\left(5x+4\right)\left(x+5\right)\)
\(c,7x\left(2x-1\right)-4x+2\)
\(=7x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(7x-2\right)-\left(2x-1\right)\)
\(d,x^2-16+2\left(x+4\right)\)
\(=x^2-16+2x+8\)
\(=x\left(x-2\right)-8\) ( Ý này thì k chắc lắm, sai thông cảm :)) )
\(e,x^2-10x+9\)
\(=x^2-x-9x+9\)
\(=x\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
\(f,\left(2x-1\right)^2-\left(x-3\right)^2=0\) ( mk đoán bài này là tìm x, sai thì bảo mk để mk sửa nhé )
\(\Rightarrow\left(2x-1\right)^2=\left(x-3\right)^2\)
\(\Leftrightarrow\pm\left(2x-1\right)=\pm\left(x-3\right)\)
\(\Rightarrow\hept{\begin{cases}2x-1=x-3\\-\left(2x-1\right)=-\left(x-3\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-1-x+3=0\\-2x+1-x+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\-3x+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(-2\right)\\x=\frac{4}{3}\end{cases}}\)
Vậy ...
a) x( x - 2 ) + x - 2 = 0
<=> x( x - 2 ) + ( x - 2 ) = 0
<=> ( x - 2 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) 3x2 - 6x = 0
<=> 3x( x - 2 ) = 0
<=> \(\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
c) ( 5x - 4 )2 - 49x2 = 0
<=> ( 5x - 4 )2 - ( 7x )2 = 0
<=> ( 5x - 4 - 7x )( 5x - 4 + 7x ) = 0
<=> ( -2x - 4 )( 12x - 4 ) = 0
<=> \(\orbr{\begin{cases}-2x-4=0\\12x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}\)
a.
\(x\left(x-2\right)+x-2=0\)
\(x\left(x-2\right)+1\left(x-2\right)=0\)
\(\left(x-2\right)\left(x+1\right)=0\)
\(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)
\(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b.
\(3x^2-6x=0\)
\(3x\left(x-2\right)=0\)
\(\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
c.
\(\left(5x-4\right)^2-49x^2=0\)
\(\left(5x-4\right)^2-\left(7x\right)^2=0\)
\(\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
\(\left(-2x-4\right)\left(12x-4=0\right)\)
\(\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}\)
Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương
Chỉ trình bày lời giải, tự tìm điều kiện nha :v
d) \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Rightarrow x-1=1\Leftrightarrow x=2\)
f) \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-4}+2=2\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Rightarrow x-4=0\Leftrightarrow x=4\)
1) Ta có : \(4x+20=0\)
=> \(x=-\frac{20}{4}=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
2) Ta có : \(3x+15=30\)
=> \(3x=15\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
3) Ta có : \(8x-7=2x+11\)
=> \(8x-2x=11+7=18\)
=> \(6x=18\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
4) Ta có : \(2x+4\left(36-x\right)=100\)
=> \(2x+144-4x=100\)
=> \(-2x=-44\)
=> \(x=22\)
Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)
5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)
=> \(2x-3+5=4x+12\)
=> \(-2x=10\)
=> \(x=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
1) 4x+20=0
\(\Leftrightarrow\) 4x=-20
\(\Leftrightarrow\) x=-5
Vậy pt trên có tập nghiệm là S={-5}
2) 3x+15=30
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
3) 8x-7=2x+11
\(\Leftrightarrow\) 8x-2x=11+7
\(\Leftrightarrow\) 6x=18
\(\Leftrightarrow\) x=3
Vậy pt trên có tập nghiệm là S={3}
4) 2x+4(36-x)=100
\(\Leftrightarrow\) 2x+144-4x=100
\(\Leftrightarrow\) -2x+144=100
\(\Leftrightarrow\) -2x=-44
\(\Leftrightarrow\) x=22
Vậy pt trên có tập nghiệm là S={22}
5) 2x-(3-5x)=4(x+3)
\(\Leftrightarrow\) 2x-3+5x=4x+12
\(\Leftrightarrow\) 2x+5x-4x=12+3
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
6) 3x(x+2)=3(x-2)2
\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)
\(\Leftrightarrow\) 3x2+6x=3x2-12x+12
\(\Leftrightarrow\) 3x2-3x2+6x+12x=12
\(\Leftrightarrow\) 18x=12
\(\Leftrightarrow\) x=\(\frac{2}{3}\)
a: \(\Leftrightarrow x\left(16-x^2\right)+x^3-125=3\)
=>16x-125=3
=>16x=128
hay x=8
b: \(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
\(\Leftrightarrow6x^2+2-6x^2+12x-6=-10\)
=>12x-4=-10
=>12x=-6
hay x=-1/2
c: \(\Leftrightarrow x^3-27+x\left(4-x^2\right)=1\)
\(\Leftrightarrow4x-27=1\)
hay x=7
a) 4x2-12x=9
<=> 4x(x-3)=9
<=> 4x=9 hoặc x-3=9
=> x=4/9 => x=12
b) 3.(x2-4)-5x(x+2)=0
<=> 3(x-2)(x+2)-5x(x+2)=0
<=> (x+2)(3x-6-5x)=0
<=> (x+2)(-2x-6)=0
<=> x+2=0 hoặc -2x-6=0
=> x=-2 => x=-3
x2 - 5x - 36 = 0
=> x2 - 9x + 4x - 36 = 0
=> x(x - 9) + 4(x - 7) = 0
=> (x + 4)(x - 7) = 0
=> \(\orbr{\begin{cases}x+4=0\\x-7=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-4\\x=7\end{cases}}\)
6x2 - (2x + 5)(3x - 2) = -12
=> 6x2 - 6x2 + 4x - 15x + 10 = -12
=> -11x = -22
=> x = 2
x2 - 25 = 6x - 9
=> x2 - 25 - 6x + 9 = 0
=> x2 - 6x - 16 = 0
=> x2 - 8x + 2x - 16 = 0
=> x(x - 8) + 2(x - 8) = 0
=> (x + 2)(x - 8) = 0
=> \(\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)
\(a,\Leftrightarrow\left(x-9\right)^2-2\left(x-9\right)+1=0\\ \Leftrightarrow\left(x-9-1\right)^2=0\Leftrightarrow x=10\\ b,Sửa:49x^2-14x\sqrt{5}+5=0\\ \Leftrightarrow\left(7x-\sqrt{5}\right)^2=0\Leftrightarrow x=\dfrac{\sqrt{5}}{7}\)