Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
k mik nha
Số các số hạng là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )
Vì 2010 chia hết cho 3 nên ta nhóm 3 số vào 1 nhóm.
Ta có: ( 3 mũ 1 + 3 mũ 2 + 3 mũ 3 ) + ( 3 mũ 4 + 3 mũ 5 + 3 mũ 6 ) +........+ ( 3 mũ 2008 + 3 mũ 2009 + 3 mũ 2010 )
3 mũ 1*(1+3+9)+3 mũ 4*(1+3+9)+........+3 mũ 2008*(1+3+9)
3 mũ 1*13 + 3 mũ 4*13 + .........+ 3 mũ 2008*13
(3 mũ 1+3 mũ 4+......+3 mũ 2008)*13
Vì 13 chia hết cho 13 nên ( 3 mũ 1+3 mũ 4+3 mũ 2008 ) chia hết cho 13 hay ( đẳng thức của đề bài cho ) chia hết cho 13.
\(3^{n+1}+3^{n+2}+3^{n+3}\)
\(=3^{n+1}\left(1+3+3^2\right)\)
\(=3^{n+1}.13⋮13\forall n\inℕ\)
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
a, n+5 chia hết cho n+2
n+2 chia hết cho n+2
=> (n+5) - (n+2) chia hết cho 2
n+5-n-2 chia hết cho 2
3 chia hết cho 2
=>2 thuộc Ư(3)=...
b, 2n+1 chia hết cho n+5
n+5 chia hết cho n+5 => 2(n+5) chia hết cho n+5
Làm tương tự ý a
c, n2+3n+13 = n (n+3) +13
Mà n(n+3) chia hết cho n+3
=> 13 chia hết cho n+3
=> n+3 thuộc Ư(13)
=>...