K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

a) Thiếu đề thì phải.

b) Ta có: \(\dfrac{a}{3}-\dfrac{1}{2}=\dfrac{1}{b+5}\)

\(\Rightarrow\dfrac{2a}{6}-\dfrac{3}{6}=\dfrac{1}{b+5}\)

\(\Rightarrow\dfrac{2a-3}{6}=\dfrac{1}{b+5}\)

\(\Rightarrow\left(2a-3\right)\left(b+5\right)=6\)

\(\Rightarrow2a-3\inƯ\left(6\right);b+5\inƯ\left(6\right)\)

\(\Rightarrow2a-3\)\(b+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(2a-3\) lẻ \(\Rightarrow2a-3\in\left\{\pm1;\pm3\right\}\)

_ Xét 4 t/h trên.

Vậy .....

2 tháng 4 2017

ko đề 1 mk chép đủ đấy có mỗi chỗ là chia cho 5 dư 3 chứ ko hải sư 3 thôi

13 tháng 6 2018

1/

a/ A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120

=> 3A - A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120 - (1 + 3 + 3^2 + 3^3 + ... + 3^119)

=> 2A = 3^120 - 1

=> A = (3 ^120 - 1)/2

b/ 2A + 1 = 27x

<=> 3^120 = 27x

<=> 27^40 = 27x

<=> x = 40

c/ +) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3^2) + (3 + 3^3) + (3^4 + 3^6) + ...+ (3^117 + 3^119)

= 1+ 3^2 + 3(1+ 3^2) + 3^4(1 + 3^2) ...+ 3^117( 1+ 3^2)

= (1 + 3^2) (1 + 3 + 3^4+ ...+ 3^117)

= 10 * (1 + 3 + 3^4+ ...+ 3^117) \(⋮\) 5

+) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ...+ (3^117 + 3^118 + 3^119)

= (1 + 3 + 3^2) + 3^3 (1+ 3 + 3^2) + ...+ 3^117 (1+ 3 + 3^2)

= (1 + 3 + 3^2) (1+ 3^3 +... + 3^117)

= 13 * (1+ 3^3 +... + 3^117) \(⋮\)13

13 tháng 6 2018

2b

Câu hỏi của Raf - Toán lớp 6 - Học toán với OnlineMath

30 tháng 11 2016

Bài 1 : Giải :

Vì : a chia cho 3 dư 1 => a + 2 \(⋮\)3

a chia cho 4 dư 2 => a + 2 \(⋮\)4

a chia cho 5 dư 3 => a + 2 \(⋮\)5

a chia cho 6 dư 4 => a + 2 \(⋮\)6

=> a + 2 \(\in\) BC( 3,4,5,6 )

3 = 3

4 = 22

5 = 5

6 = 2 .3

BCNN( 3,4,5,6 ) = 22 . 3 . 5 = 60

BC( 3,4,5,6 ) = { 0;60;120;180;... }

Mà : a nhỏ nhất => a + 2 nhỏ nhất

=> a + 2 = 60

=> a = 60 - 2 = 58

Vậy số tự nhiên cần tìm là 58

Bài 2 : Giải :

\(A=\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)

\(A=\frac{1.1.5.1.6.1.+1.2.5.2.6.2+1.4.5.4.6.4+1.9.5.9.6.9}{1.1.3.1.5.1+1.2.3.2.5.2+1.4.3.4.5.4+1.9.3.9.5.9}\)

\(A=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)

\(A=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)

Vậy : A = 2

Bài 3: Giải :

Quy đồng tử số , ta có :

\(\frac{6}{7}=\frac{6.3}{7.3}=\frac{18}{21};\frac{9}{11}=\frac{9.2}{11.2}=\frac{18}{22};\frac{2}{3}=\frac{2.9}{3.9}=\frac{18}{27}\)

=> \(\frac{18}{21}\) số thứ nhất = \(\frac{18}{22}\) số thứ hai và = \(\frac{18}{27}\) số thứ ba .

Hay : \(\frac{1}{21}\) số thứ nhất = \(\frac{1}{22}\) số thứ hai và = \(\frac{1}{27}\) số thứ ba .

Vậy coi số thứ nhất là 21 phần bằng nhau , số thứ hai là 22 phần bằng nhau thì số thứ ba là 27 phần bằng nhau như thế .

Tổng số phần bằng nhau là :

21 + 22 + 27 = 70

Số thứ nhất là :

210 : 70 . 21 = 63

Số thứ hai là :

210 : 70 . 22 = 66

Số thứ ba là :

210 - 63 - 66 = 81

Đáp số : ...

30 tháng 11 2016

Đúng rồi đó cậu! Giỏi thế?

30 tháng 1 2016

lì xì tết thì phải vừa nhiều vừa khó chứ

duyệt đi

30 tháng 1 2016

Bạn ơi, bạn hỏi từng câu thôi tớ mói trả lời đc chứ

12 tháng 9 2021

a ) 

Theo bài ra: (a - 4) chia hết cho 5 => (a - 4) + 20 chia hết cho 5 => a + 16 chia hết cho 5

(a - 5) chia hết cho 7 => (a - 5) + 21 chia hết cho 7 => a + 16 chia hết cho 7

(a - 6) chia hết cho 11 => (a - 6) + 22 chia hết cho 11 => a + 16 chia hết cho 11 

=> a + 16 thuộc BC(5; 7; 11) 

Mà BCNN(5; 7; 11) = 385

=> a + 16 thuộc B(385) = {0; 385; 770; ...}

=> a thuộc {-16; 369; 754;...}

Vì a là số tự nhiên nhỏ nhất

=> a = 369 

b ) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.\)

Ta có : 

\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

.....................

\(\frac{1}{2012^2}=\frac{1}{2012.2012}< \frac{1}{2011.2012}\)

Ta có :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.< \frac{2011}{2012}\)

Mà \(\frac{2011}{2012}< 1\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)

12 tháng 9 2021

\(b)\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)

\(< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)

\(< \)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(< \)\(1-\frac{1}{2012}\)\(=\frac{2011}{2012}< 1\)

Vậy Biểu thức    \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< 1\)

1. Tính bằng cách hợp lý a) \(\frac{-1}{5}\cdot\frac{6}{7}+\frac{3}{7}\cdot\frac{3}{5}+\frac{2^5\cdot27}{3^3\cdot64}\) b) S = \(2+2^2+2^3+...+2^9\)2. a) Tìm x biết \(\frac{x+350}{x}+315=92\cdot4-27\)b) Tìm x,y là số nguyên biết \(\frac{2x+1}{3}=\frac{2}{y}\)3.a) Viết các phân số tự nhiên liên tiếp từ 10 đến 99 ta được số M. Hỏi M có chia hết cho 3, chia hết cho 9 không ?b) Số tự nhiên a chia cho 5 dư 3, chia 9 dư 5, chia 7 dư 4....
Đọc tiếp

1. Tính bằng cách hợp lý

 a) \(\frac{-1}{5}\cdot\frac{6}{7}+\frac{3}{7}\cdot\frac{3}{5}+\frac{2^5\cdot27}{3^3\cdot64}\)

 b) S = \(2+2^2+2^3+...+2^9\)

2. 

a) Tìm x biết \(\frac{x+350}{x}+315=92\cdot4-27\)

b) Tìm x,y là số nguyên biết \(\frac{2x+1}{3}=\frac{2}{y}\)

3.

a) Viết các phân số tự nhiên liên tiếp từ 10 đến 99 ta được số M. Hỏi M có chia hết cho 3, chia hết cho 9 không ?

b) Số tự nhiên a chia cho 5 dư 3, chia 9 dư 5, chia 7 dư 4. Tìm a biết a nhỏ nhất.

4. 

So sánh S và 1 biết S= \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\)

5. Cho xOy kề bù với góc yOz, biết góc yOz gấp đôi yOx.

a) Tính số đo mỗi góc

b) Gọi Om là tia phân giác của góc yOz. Tia Oy có là tia phân giác của góc xOm không ? Vì sao ?

c. Vẽ tia Ot sao cho xOt = 20 độ. Tính góc yOt

6.Cho 5 điểm A, B, C, D, E. Cứ đi qua 2 điểm ta vẽ 1 đoạn thẳng. Gọi m là hệ số tam giác tạo thành.

a) Tính giá trị lớn nhất của m

b) Tính giá trị nhỏ nhất của m

2
12 tháng 4 2017

nhìn thôi đã ko muốn làm

12 tháng 4 2017

vậy còn cách đang từng câu hỏi 1 thôi

1. Cho biểu thức K = \(\dfrac{\left(9\dfrac{3}{4}:5,2+3,4\cdot2\dfrac{7}{34}\right):1\dfrac{9}{16}}{0,31\cdot8\dfrac{2}{5}-5,61:27\dfrac{1}{2}}:1\dfrac{1}{2}\) a) Tính giá trị của biểu thức K b) Tìm 1,25% của K 2. a) Tìm x biết \(\left(\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+...+\dfrac{1}{99\cdot101}\right)\cdot1010+\left(x-797\right)=704\) b) Tìm x,y,t biết \(\dfrac{-8}{3}=\dfrac{x}{6}=\dfrac{-96}{y^2}=\dfrac{t^3}{-24}\) c) Tìm x,y \(\in\) Z thỏa mãn x + 5 =...
Đọc tiếp

1. Cho biểu thức K = \(\dfrac{\left(9\dfrac{3}{4}:5,2+3,4\cdot2\dfrac{7}{34}\right):1\dfrac{9}{16}}{0,31\cdot8\dfrac{2}{5}-5,61:27\dfrac{1}{2}}:1\dfrac{1}{2}\)

a) Tính giá trị của biểu thức K

b) Tìm 1,25% của K

2.

a) Tìm x biết \(\left(\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+...+\dfrac{1}{99\cdot101}\right)\cdot1010+\left(x-797\right)=704\)

b) Tìm x,y,t biết \(\dfrac{-8}{3}=\dfrac{x}{6}=\dfrac{-96}{y^2}=\dfrac{t^3}{-24}\)

c) Tìm x,y \(\in\) Z thỏa mãn x + 5 = y * ( x-2 ) ( x \(\ne\) 2 )

3. Cho 2 phân số \(\dfrac{5}{12};\dfrac{9}{32}\)

a) So sánh 2 phân số.

b) Tìm các phân số có mẫu là 24 nằm giữa 2 phân số đã cho

c) Tìm phân số \(\dfrac{a}{b}\) lớn nhất, sao cho khi chia mỗi phân số đã cho cho phân số \(\dfrac{a}{b}\) thì thu được kết quả là 1 số nguyên

4.

a) Tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 3 dư 2, chia 5 dư 3, chia 7 dư 4.

b) Một thửa ruộng được chia thành 2 phần, biết \(\dfrac{3}{7}\) diện tích phần thứ nhất bằng \(\dfrac{2}{5}\) diện tích phần thứ 2 và \(\dfrac{9}{13}\) diện tích phần thứ 2 lớn hơn \(\dfrac{11}{20}\) diện tích phần thứ nhất 0,1396 km2. Tính diện tích thửa ruộng ra đơn vị là m2.

5.

5.1) Cho 2 góc kề nhau là xOy và yOt có tổng số đo là 150 độ, trong đó số đo góc xOy bằng 4 lần góc yOt.

a) Tính số đo mỗi góc.

b) Trong góc xOy vẽ tia Oz sao cho xOz bằng 90 độ. Chứng tỏ rằng tia Oy là tia phân giác cảu góc zOt.

c) Vẽ tia Ot' là tia đối của tia Ot. So sánh góc xOt' và yOt.

5.2) Cho 4 điểm A,B,C,D theo thứ tự đó trên 1 đường thẳng biết AB = CD = 2cm, BC = 3cm

a) So sánh AC và BD

b) Chứng tỏ rằng 2 đoạn BC và AD có cùng 1 điểm trung.

0

1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7

=> 4 (a - 3) chia hết cho 7  => 4a - 12 chia hết cho 7

=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)

a chia cho 13 dư 11 => a - 11 chia hết cho 13

=> 4 (a - 11) chia hết cho 13  => 4a - 44 chia hết cho 13

=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)

a chia cho 17 dư 14 => a - 14 chia hết cho 17

=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17

=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)

Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)

Mà a nhỏ nhất => 4a - 5 nhỏ nhất

=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547

=> 4a = 1552  => a= 388

2. Gọi ƯCLN(a,b) = d

=> a = d . m          (ƯCLN(m,n) = 1)

     b = d . n  

Do a < b => m<n

Vì BCNN(a,b) . ƯCLN(a,b) = a . b

\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)

Vì BCNN(a,b) + ƯCLN(a,b) = 19

=> m . n . d  + d = 19

=> d . (m . n + 1) = 19

=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)

Ta có bảng sau:

d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9

Vậy (a,b) = (2;9) ; (1 ; 18)

3.