K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Tọa độ vectơ \(\overrightarrow u  = \left( {2.\left( { - 1} \right) + 3 - 3.2;2.2 + 1 - 3.\left( { - 3} \right)} \right) = \left( { - 5;14} \right)\)

b) Do \(\overrightarrow x  + 2\overrightarrow b  = \overrightarrow a  + \overrightarrow c  \Leftrightarrow \overrightarrow x  = \overrightarrow a  + \overrightarrow c  - 2\overrightarrow b  = \left( { - 1 + 2 - 2.3;2 + \left( { - 3} \right) - 2.1} \right) = \left( { - 5; - 3} \right)\)

Vậy \(\overrightarrow x  = \left( { - 5; - 3} \right)\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

26 tháng 1 2021

Gọi G là trọng tâm tam giác ABC

\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1}{3};y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{1}{3}\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất khi \(3MG\) nhỏ nhất

\(\Leftrightarrow M\) là hình chiếu của \(G\) trên trục tung

\(\Leftrightarrow M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\le3MG=1\)

Đẳng thức xảy ra khi \(M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\) Tung độ \(y_M=\dfrac{1}{3}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có:  \(\overrightarrow {OM}  = \left( {2;1} \right),\overrightarrow {MN}  = \left( { - 3;2} \right),\overrightarrow {MP}  = \left( {2;1} \right)\)

b) Ta có: \(\overrightarrow {MN} .\overrightarrow {MP}  =  - 3.2 + 2.1 =  - 4\)

c) Ta có: \(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}}  = \sqrt {13} ,MP = \left| {\overrightarrow {MP} } \right| = \sqrt {{2^2} + {1^2}}  = \sqrt 5 \)

d) Ta có:  \(\cos \widehat {MNP} = \frac{{\overrightarrow {MN} .\overrightarrow {MP} }}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {MP} } \right|}} = \frac{- 4}{{\sqrt {13} .\sqrt 5 }} = \frac{- 4}{{\sqrt {65} }}\)

e) Tọa độ trung điểm I của đoạn NP là: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_N} + {x_P}}}{2} = \frac{3}{2}\\{y_I} = \frac{{{y_N} + {y_P}}}{2} = \frac{5}{2}\end{array} \right. \Leftrightarrow I\left( {\frac{3}{2};\frac{5}{2}} \right)\)

Tọa độ trọng tâm G của tam giác MNP là: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_M} + {x_N} + {x_P}}}{3}\\{y_G} = \frac{{{y_M} + {y_N} + {y_P}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \frac{5}{3}\\{y_C} = 2\end{array} \right. \Leftrightarrow G\left( {\frac{5}{3};2} \right)\)

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\overrightarrow b  = \left( {4; - 1} \right)\) và \(\overrightarrow a  = 3.\overrightarrow i  - 2.\overrightarrow j \;\; \Rightarrow \;\overrightarrow a \;\left( {3; - 2} \right)\)

\( \Rightarrow 2\;\overrightarrow a  - \overrightarrow b  = \left( {2.3 - 4\;;\;2.\left( { - 2} \right) - \left( { - 1} \right)} \right) = \left( {2; - 3} \right)\)

Lại có: M (-3; 6), N(3; -3)

\( \Rightarrow \overrightarrow {MN}  = \left( {3 - \left( { - 3} \right); - 3 - 6} \right) = \left( {6; - 9} \right)\)

Dễ thấy:\(\left( {6; - 9} \right) = 3.\left( {2; - 3} \right)\) \( \Rightarrow \overrightarrow {MN}  = 3\left( {2\;\overrightarrow a  - \overrightarrow b } \right)\)

b) Ta có: \(\overrightarrow {OM}  = \left( { - 3;6} \right)\) ( do M(-3; 6)) và \(\overrightarrow {ON}  = \left( {3; - 3} \right)\) (do N (3; -3)).

Hai vectơ này không cùng phương (vì \(\frac{{ - 3}}{3} \ne \frac{6}{{ - 3}}\)).

Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.

Vậy chúng không thẳng hàng.

c) Các điểm O, M, N không thẳng hàng nên OMNP là một hình hành khi và chỉ khi \(\overrightarrow {OM}  = \overrightarrow {PN} \).

Do \(\overrightarrow {OM}  = \left( { - 3;6} \right),\;\overrightarrow {PN}  = \left( {3 - x; - 3 - y} \right)\)  nên

\(\overrightarrow {OM}  = \overrightarrow {PN}  \Leftrightarrow \left\{ \begin{array}{l} - 3 = 3 - x\\6 =  - 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y =  - 9\end{array} \right.\)

Vậy điểm cần tìm là P (6; -9).

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) 

b) Vì tọa độ vectơ \(\overrightarrow {OM} \) chính là tọa độ của điểm M (với mọi M) nên ta có:

\(\overrightarrow {OD}  = \left( { - 1;4} \right),\overrightarrow {OE}  = \left( {0; - 3} \right),\overrightarrow {OF}  = \left( {5;0} \right)\)

c) 

Từ hình vẽ ta có tọa độ của hai vectơ   và \(\overrightarrow j \)là

 và \(\overrightarrow j  = (0;1)\)